如圖,矩形ABOD的頂點A是函數(shù)與函數(shù)y2=-x-(k+1)的圖象在第二象限內(nèi)的交點,AB⊥x軸于點B,AD⊥y軸于點D,且矩形ABOD的面積為3.
(1)求兩函數(shù)的解析式以及兩交點A,C的坐標(biāo);
(2)直接寫出當(dāng)y1>y2時x的取值范圍;
(3)若點P是y軸上一點,且S△APC=5,求點P的坐標(biāo).

【答案】分析:(1)先根據(jù)反比例函數(shù)比例系數(shù)k的幾何意義和矩形ABOD的面積為3求出k的值,得到兩函數(shù)的解析式,再將兩函數(shù)解析式聯(lián)立求出交點A,C的坐標(biāo);
(2)利用交點A、C的坐標(biāo)即可得出函數(shù)值y1>y2時自變量x的取值范圍;
(3)設(shè)點P的坐標(biāo)為(0,m),先求出直線y=-x+2與y軸的交點坐標(biāo)為M(0,2),根據(jù)S△APC=S△AMP+S△CMP=5,求出|PM|的值即可求出m的值.
解答:解:(1)∵點A在反比例函數(shù)y=的圖象上,AB⊥x軸于點B,AD⊥y軸于點D,且矩形ABOD的面積為3,
∴|k|=3,
解得k=±3,
又∵點A在第二象限,
∴k=-3,
∴反比例函數(shù)的解析式為y1=-,一次函數(shù)的解析式為y=-x+2.
,解得,
∴交點A的坐標(biāo)為(-1,3),點C的坐標(biāo)為(3,-1);

(2)∵點A的坐標(biāo)為(-1,3),點C的坐標(biāo)為(3,-1),
∴當(dāng)y1>y1時,-1<x<0或x>3;

(3)設(shè)點P的坐標(biāo)為(0,m),
直線y=-x+2與y軸的交點坐標(biāo)為M(0,2),
∵S△APC=S△AMP+S△CMP=5,
|PM|(1+3)=5,
∴|PM|=,
即|m-2|=,
∴m=或m=-
∴點P的坐標(biāo)為(0,)或(0,-).
點評:此題考查了反比例函數(shù)比例系數(shù)k的幾何意義,反比例函數(shù)的性質(zhì),求兩函數(shù)的交點坐標(biāo),比較函數(shù)值的大小,三角形的面積等知識,求出交點坐標(biāo),利用數(shù)形結(jié)合思想是解題的重點.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,矩形ABOD的頂點A是函數(shù)y=
kx
與函數(shù)y=-x-(k+1)在第二象限的交點,AB⊥x軸于B,AD⊥y軸于D,且矩形ABOD的面積為3.
(1)求兩函數(shù)的解析式.
(2)求兩函數(shù)的交點A、C的坐標(biāo).
(3)若點P是y軸上一動點,且S△APC=5,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,矩形ABOD的頂點A是函數(shù)y1=
kx
與函數(shù)y2=-x-(k+1)的圖象在第二象限內(nèi)的交點,AB⊥x軸于點B,AD⊥y軸于點D,且矩形ABOD的面積為3.
(1)求兩函數(shù)的解析式以及兩交點A,C的坐標(biāo);
(2)直接寫出當(dāng)y1>y2時x的取值范圍;
(3)若點P是y軸上一點,且S△APC=5,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,矩形ABOD的頂點A是函數(shù)y=數(shù)學(xué)公式與函數(shù)y=-x-(k+1)在第二象限的交點,AB⊥x軸于B,AD⊥y軸于D,且矩形ABOD的面積為3.
(1)求兩函數(shù)的解析式.
(2)求兩函數(shù)的交點A、C的坐標(biāo).
(3)若點P是y軸上一動點,且S△APC=5,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年5月中考數(shù)學(xué)模擬試卷(57)(解析版) 題型:解答題

如圖,矩形ABOD的頂點A是函數(shù)y=與函數(shù)y=-x-(k+1)在第二象限的交點,AB⊥x軸于B,AD⊥y軸于D,且矩形ABOD的面積為3.
(1)求兩函數(shù)的解析式.
(2)求兩函數(shù)的交點A、C的坐標(biāo).
(3)若點P是y軸上一動點,且S△APC=5,求點P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案