【題目】如圖 1,二次函數(shù)的圖像過(guò)點(diǎn) A (3,0),B (0,4)兩點(diǎn),動(dòng)點(diǎn) P 從 A 出發(fā),在線(xiàn)段 AB 上沿 A → B 的方向以每秒 2 個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),過(guò)點(diǎn)P作 PD⊥y 于點(diǎn) D ,交拋物線(xiàn)于點(diǎn) C .設(shè)運(yùn)動(dòng)時(shí)間為 t (秒).
(1)求二次函數(shù)的表達(dá)式;
(2)連接 BC ,當(dāng)t=時(shí),求△BCP的面積;
(3)如圖 2,動(dòng)點(diǎn) P 從 A 出發(fā)時(shí),動(dòng)點(diǎn) Q 同時(shí)從 O 出發(fā),在線(xiàn)段 OA 上沿 O→A 的方向以 1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),當(dāng)點(diǎn) P 與 B 重合時(shí),P 、 Q 兩點(diǎn)同時(shí)停止運(yùn)動(dòng),連接 DQ 、 PQ ,將△DPQ沿直線(xiàn) PC 折疊到 △DPE .在運(yùn)動(dòng)過(guò)程中,設(shè) △DPE 和 △OAB重合部分的面積為 S ,直接寫(xiě)出 S 與 t 的函數(shù)關(guān)系式及 t 的取值范圍.
【答案】(1);(2)4;(3).
【解析】
試題分析:(1)直接將A、B兩點(diǎn)的坐標(biāo)代入列方程組解出即可;
(2)如圖1,要想求△BCP的面積,必須求對(duì)應(yīng)的底和高,即PC和BD;先求OD,再求BD,PC是利用點(diǎn)P和點(diǎn)C的橫坐標(biāo)求出,要注意符號(hào);
(3)分兩種情況討論:①△DPE完全在△OAB中時(shí),即當(dāng)時(shí),如圖2所示,重合部分的面積為S就是△DPE的面積;②△DPE有一部分在△OAB中時(shí),當(dāng)時(shí),如圖4所示,△PDN就是重合部分的面積S.
試題解析:(1)把A(3,0),B(0,4)代入中得:
,解得:,∴解析式為:;
(2)如圖1,當(dāng)時(shí),AP=2t,∵PC∥x軸,∴,∴,∴OD===,當(dāng)y=時(shí),=,,解得:,,∴C(﹣1,),由,得,則PD=2,∴S△BCP=×PC×BD==4;
(3)分兩種情況討論:①如圖3,當(dāng)點(diǎn)E在A(yíng)B上時(shí),由(2)得OD=QM=ME=,∴EQ=,由折疊得:EQ⊥PD,則EQ∥y軸,∴,∴,∴t=,同理得:PD=,∴當(dāng)時(shí),S=S△PDQ=×PD×MQ=,;
②當(dāng)時(shí),如圖4,P′D′=,點(diǎn)Q與點(diǎn)E關(guān)于直線(xiàn)P′C′對(duì)稱(chēng),則Q(t,0)、E(t,),∵AB的解析式為:,D′E的解析式為:,則交點(diǎn)N(,),∴S=S△P′D′N(xiāo)=×P′D′×FN=,∴.
綜上所述:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某造紙企業(yè)為了更好地處理污水問(wèn)題,決定購(gòu)買(mǎi)10臺(tái)新型污水處理設(shè)備.甲、乙兩種型號(hào)的設(shè)備可選,其中每臺(tái)的價(jià)格,月處理污水量如表:
A型 | B型 | |
價(jià)格(萬(wàn)元/) | 10 | 8 |
處理污水量(噸/月) | 180 | 150 |
(1)經(jīng)預(yù)算:該企業(yè)購(gòu)買(mǎi)污水處理設(shè)備的資金不超過(guò)85萬(wàn)元,你認(rèn)為該企業(yè)有哪幾種購(gòu)買(mǎi)方案.
(2)在(1)的條件下,若每月需要處理的污水不低于1530噸,為了節(jié)約資金,請(qǐng)你為該企業(yè)設(shè)計(jì)一種最省錢(qián)的購(gòu)買(mǎi)方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】張老師為了了解班級(jí)學(xué)生完成數(shù)學(xué)課前預(yù)習(xí)的具體情況,對(duì)本班部分學(xué)生進(jìn)行了為期半個(gè)月的跟蹤調(diào)查.他將調(diào)查結(jié)果分為四類(lèi):A:很好;B:較好;C:一般;D:較差,并將調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖解答下列問(wèn)題:
(1)請(qǐng)計(jì)算出A類(lèi)男生和C類(lèi)女生的人數(shù),并將條形統(tǒng)計(jì)圖補(bǔ)充完整.
(2)為了共同進(jìn)步,張老師想從被調(diào)查的A類(lèi)和D類(lèi)學(xué)生中各隨機(jī)機(jī)抽取一位同學(xué)進(jìn)行“一幫一”互助學(xué)習(xí),請(qǐng)用畫(huà)樹(shù)狀圖或列表的方法求出所選兩位同學(xué)恰好是一男一女同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某大樓的頂部樹(shù)有一塊廣告牌CD,小李在山坡的坡腳A處測(cè)得廣告牌底部D的仰角為60°.沿坡面AB向上走到B處測(cè)得廣告牌頂部C的仰角為45°,已知山坡AB的坡度i=1:,AB=10米,AE=15米.(i=1:是指坡面的鉛直高度BH與水平寬度AH的比)
(1)求點(diǎn)B距水平面AE的高度BH;
(2)求廣告牌CD的高度.
(測(cè)角器的高度忽略不計(jì),結(jié)果精確到0.1米.參考數(shù)據(jù):1.414,1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列條件:①∠A+∠B=∠C,②∠C=90°,③AC:BC:AB=3:4:5,④∠A:∠B:∠C=3:4:5.⑤a2=(b+c)(b﹣c)中,能確定△ABC是直角三角形的有( )
A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在等邊中,點(diǎn)分別在邊上.且,過(guò)點(diǎn)作,交的延長(zhǎng)線(xiàn)于點(diǎn).
求的度數(shù);
若,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“校園安全”受到全社會(huì)的廣泛關(guān)注,我市某中學(xué)對(duì)部分學(xué)生就校園安全知識(shí)的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了下面兩幅尚不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問(wèn)題:
(1)接受問(wèn)卷調(diào)查的學(xué)生共有_______人,扇形統(tǒng)計(jì)圖中“基本了解”部分所對(duì)應(yīng)扇形的圓心角為_______°;
(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該中學(xué)共有學(xué)生1800人,請(qǐng)根據(jù)上述調(diào)查結(jié)果,估計(jì)該中學(xué)學(xué)生中對(duì)校園安全知識(shí) 達(dá)到“了解”和“基本了解”程度的總?cè)藬?shù);
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,AD∥BE,∠A=∠E,
(1)求證:∠1=∠2;
(2)若DC平分∠ADE,直接寫(xiě)出圖中所有與∠1相等的角.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知已知拋物線(xiàn)經(jīng)過(guò)原點(diǎn)O和x軸上一點(diǎn)A(4,0),拋物線(xiàn)頂點(diǎn)為E,它的對(duì)稱(chēng)軸與x軸交于點(diǎn)D,直線(xiàn)y=﹣2x﹣1經(jīng)過(guò)拋物線(xiàn)上一點(diǎn)B(﹣2,m)且與y軸交于點(diǎn)C,與拋物線(xiàn)的對(duì)稱(chēng)軸交于點(diǎn)F.
(1)求m的值及該拋物線(xiàn)的解析式
(2)P(x,y)是拋物線(xiàn)上的一點(diǎn),若S△ADP=S△ADC,求出所有符合條件的點(diǎn)P的坐標(biāo).
(3)點(diǎn)Q是平面內(nèi)任意一點(diǎn),點(diǎn)M從點(diǎn)F出發(fā),沿對(duì)稱(chēng)軸向上以每秒1個(gè)單位長(zhǎng)度的速度勻速運(yùn)動(dòng),設(shè)點(diǎn)M的運(yùn)動(dòng)時(shí)間為t秒,是否能使以Q、A、E、M四點(diǎn)為頂點(diǎn)的四邊形是菱形?若能,請(qǐng)直接寫(xiě)出點(diǎn)M的運(yùn)動(dòng)時(shí)間t的值;若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com