點P(x,y)在第一象限,且x+y=10,點A的坐標為(8,0),設原點為O,△OPA的面積為S.
(1)求S與x的函數(shù)關系式,寫出x的取值范圍,畫出這個函數(shù)圖象;
(2)當S=12時,求點P的坐標;
(3)△OPA的面積能大于40嗎?為什么?
(1)S=40﹣4x, 0<x<10,圖象見解析;(2)(7,3);(3)△OPA的面積不能大于40,證明見解析.
【解析】
試題分析:(1)根據(jù)三角形的面積公式△OPA的面積=OA•|yp|列式,即可用含x的解析式表示S=40﹣4x,然后根據(jù)S>0及已知條件,可求出x的取值范圍,根據(jù)一次函數(shù)的性質(zhì)和x的取值范圍可畫出函數(shù)S的圖象;(2)將S=12代入求得的函數(shù)的解析式,然后求得x、y的值,從而求得點P的坐標;(3)根據(jù)一次函數(shù)的性質(zhì)及自變量的取值范圍即可判斷.
試題解析:(1)∵A和P點的坐標分別是(8,0)、(x,y),
∴△OPA的面積=OA•|yp|,
∴S=×8×|y|=4y,
∵x+y=10,
∴y=10﹣x,
∴S=4(10﹣x)=40﹣4x,
∵S=﹣4x+40>0,
x<10,
又∵點P在第一象限,
∴x>0,
即x的范圍為:0<x<10,
∵S=﹣4x+40,S是x的一次函數(shù),
∴函數(shù)圖象經(jīng)過點(10,0),(0,40),
所畫圖象如下:
(2)∵S=﹣4x+40,
∴當S=12時,12=﹣4x+40,
解得:x=7,y=3,
即當點P的坐標為(7,3);
(3)△OPA的面積不能大于40.理由如下:
∵S=﹣4x+40,﹣4<0,
∴S隨x的增大而減小,
又∵x=0時,S=40,
∴當0<x<10,S<40,
即△OPA的面積不能大于40.
考點:一次函數(shù)和其圖像.
科目:初中數(shù)學 來源: 題型:
k | x |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com