在△ABC中,∠CAB=90°,AD⊥BC于點D,點E為AB的中點,EC與AD交于點G,點F在BC上.
(1)如圖1,AC:AB=1:2,EF⊥CB,求證:EF=CD.
(2)如圖2,AC:AB=1:,EF⊥CE,求EF:EG的值.

【答案】分析:(1)根據(jù)同角的余角相等得出∠CAD=∠B,根據(jù)AC:AB=1:2及點E為AB的中點,得出AC=BE,再利用AAS證明△ACD≌△BEF,即可得出EF=CD;
(2)作EH⊥AD于H,EQ⊥BC于Q,先證明四邊形EQDH是矩形,得出∠QEH=90°,則∠FEQ=∠GEH,再由兩角對應(yīng)相等的兩三角形相似證明△EFQ∽△EGH,得出EF:EG=EQ:EH,然后在△BEQ中,根據(jù)正弦函數(shù)的定義得出EQ=BE,在△AEH中,根據(jù)余弦函數(shù)的定義得出EH=AE,又BE=AE,進而求出EF:EG的值.
解答:(1)證明:如圖1,
在△ABC中,∵∠CAB=90°,AD⊥BC于點D,
∴∠CAD=∠B=90°-∠ACB.
∵AC:AB=1:2,∴AB=2AC,
∵點E為AB的中點,∴AB=2BE,
∴AC=BE.
在△ACD與△BEF中,
,
∴△ACD≌△BEF,
∴CD=EF,即EF=CD;

(2)解:如圖2,作EH⊥AD于H,EQ⊥BC于Q,
∵EH⊥AD,EQ⊥BC,AD⊥BC,
∴四邊形EQDH是矩形,
∴∠QEH=90°,
∴∠FEQ=∠GEH=90°-∠QEG,
又∵∠EQF=∠EHG=90°,
∴△EFQ∽△EGH,
∴EF:EG=EQ:EH.
∵AC:AB=1:,∠CAB=90°,
∴∠B=30°.
在△BEQ中,∵∠BQE=90°,
∴sin∠B==,
∴EQ=BE.
在△AEH中,∵∠AHE=90°,∠AEH=∠B=30°,
∴cos∠AEH==,
∴EH=AE.
∵點E為AB的中點,∴BE=AE,
∴EF:EG=EQ:EH=BE:AE=1:
點評:本題考查了相似三角形的判定和性質(zhì)、全等三角形的判定和性質(zhì)、矩形的判定和性質(zhì),解直角三角形,綜合性較強,有一定難度.解題的關(guān)鍵是作輔助線,構(gòu)造相似三角形,并且證明四邊形EQDH是矩形.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

4、如圖,在△ABC中,CA,CB的垂直平分線交點在第三邊上,那么這個三角形是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•桂林)如圖,在△ABC中,CA=CB,AD⊥BC,BE⊥AC,AB=5,AD=4,則AE=
3
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知,在△ABC中,CA=CB,CA、CB的垂直平分線的交點O在AB上,M、N分別在直線AC、BC上,∠MON=∠A=45°
(1)如圖1,若點M、N分別在邊AC、BC上,求證:CN+MN=AM;
(2)如圖2,若點M在邊AC上,點N在BC邊的延長線上,試猜想CN、MN、AM之間的數(shù)量關(guān)系,請寫出你的結(jié)論(不要求證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,CA⊥DB,A為垂足,BF⊥DC,F(xiàn)為垂足,AB=AC,DB=7,DA=2,
CA,BF交于E,則EC的長為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在△ABC中,CA=CB,∠ACB=120°,將一塊足夠大的直角三角尺PMN(∠M=90°、∠MPN=30°)按如圖所示放置,頂點P在線段AB上滑動,三角尺的直角邊PM始終經(jīng)過點C,并且與CB的夾角∠PCB=α,斜邊PN交AC于點D.
(1)當PN∥BC時,∠ACP=
90
90
度;
(2)當α=15°時,求∠ADN的度數(shù);
(3)在點P的滑動過程中,△PCD的形狀可以是等腰三角形嗎?若不可以,請說明理由;若可以,請求出夾角α的大。

查看答案和解析>>

同步練習(xí)冊答案