若三角形的面積為,一邊長為,則這邊上的高線長為   
【答案】分析:根據(jù)三角形的面積公式列式,再根據(jù)二次根式的運算進(jìn)行計算即可得解.
解答:解:三角形的面積S=ah,
∵a=2,S=2
∴h===2
故,三角形此邊的高線長為2
故答案為:2
點評:本題考查了二次根式的應(yīng)用,主要利用了三角形的面積,二次根式的化簡,比較簡單.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

將一次函數(shù)y=kx-1的圖象向上平移k個單位后恰好經(jīng)過點A(3,2+k).
(1)求k的值;
(2)若一條直線與函數(shù)y=kx-1的圖象平行,且與兩個坐標(biāo)軸所圍成的三角形的面積為
12
,求該直線的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

若一三角形的底為4a2+
1
2
,高為16a4-2a2+
1
4
,則此三角形的面積為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•本溪一模)如圖①,A,D分別在x軸,y軸上,AB∥y軸,DC∥x軸.點P從點D出發(fā),以1個單位長度/秒的速度,沿五邊形OABCD的邊勻速運動一周,若順次連接P,O,D三點所圍成的三角形的面積為S,點P運動的時間為t秒,已知S與t之間的函數(shù)關(guān)系如圖②中折線O′EFGHM所示.
(1)點B的坐標(biāo)為
(8,2)
(8,2)
;點C的坐標(biāo)為
(5,6)
(5,6)
;
(2)若直線PD將五邊形OABCD的周長分為11:15兩部分,求PD的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•臺灣)附圖(①)為一張三角形ABC紙片,P點在BC上.今將A折至P時,出現(xiàn)折線BD,其中D點在AC上,如圖(②)所示.若△ABC的面積為80,△DBC的面積為50,則BP與PC的長度比為何?(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

給出下列命題:
①對于實數(shù)u,v,定義一種運算“*“為:u*v=uv+v.若關(guān)于x的方程x*(a*x)=-
1
4
沒有實數(shù)根,則滿足條件的實數(shù)a的取值范圍是0<a<1;
②設(shè)直線kx+(k+1)y-1=0(k為正整數(shù))與坐標(biāo)軸所構(gòu)成的直角三角形的面積為Sk,則S1+S2+S3+…+S2008=
1004
2009

③函數(shù)y=-
1
x2
+
3
x
的最大值為2;
④甲、乙、丙3位同學(xué)選修課程,從4門課程中,甲選修2門,乙、丙各選修3門,則不同的選修方案共有48種.
其中真命題的個數(shù)有( 。

查看答案和解析>>

同步練習(xí)冊答案