【題目】如圖,直線AB與x軸交于點C,與y軸交于點B,點A(1,3),點B(0,2).連接AO
(1)求直線AB的解析式;
(2)求三角形AOC的面積.
【答案】(1) y=x+2;(2)3.
【解析】
(1)設(shè)直線AB的解析式為y=kx+b,把A、B的坐標(biāo)代入求出k、b的值即可,
(2)把y=0代入(1)所求出的解析式,便能求出C點坐標(biāo),從而利用三角形的面積公式求出三角形AOC的面積即可.
(1)設(shè)直線AB的解析式y=kx+b,
把點A(1,3),B(0,2)代入解析式得:,
解得:k=1,b=2,
把k=1,b=2代入y=kx+b得:y=x+2,
直線AB的解析式:y=x+2;
(2)把 y=0代入y=x+2得:x+2=0,
解得:x=﹣2,
∴點C的坐標(biāo)為(﹣2,0),
∴OC=2,
∵△AOC的底為2,△AOC的高為點A的縱坐標(biāo)3,
∴S△ABC=2×3×=3,
故三角形AOC的面積為3.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們規(guī)定:將一個平面圖形分成面積相等的兩部分的直線叫做該平面圖形的“面線”,“面線”被這個平面圖形截得的線段叫做該圖形的“面徑”(例如圓的直徑就是它的“面徑”).已知等邊三角形的邊長為4,則它的“面徑”長x的取值范圍是 _.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,PB為⊙O的切線,B為切點,直線PO交⊙于點E、F,過點B作PO的垂線BA,垂足為點D,交⊙O于點A,延長AO與⊙O交于點C,連接BC,AF.
(1)求證:直線PA為⊙O的切線;
(2)試探究線段EF、OD、OP之間的等量關(guān)系,并加以證明;
(3)若BC=6,tan∠F=,求cos∠ACB的值和線段PE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,四邊形AOBC是矩形,點O(0,0),點A(5,0),點B(0,3).以點A為中心,順時針旋轉(zhuǎn)矩形AOBC,得到矩形ADEF,點O,B,C的對應(yīng)點分別為D,E,F.
(1)如圖①,當(dāng)點D落在BC邊上時,求點D的坐標(biāo);
(2)如圖②,當(dāng)點D落在線段BE上時,AD與BC交于點H.
①求證△ADB≌△AOB;
②求點H的坐標(biāo).
(3)記K為矩形AOBC對角線的交點,S為△KDE的面積,求S的取值范圍(直接寫出結(jié)果即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】張師傅駕車從甲地去乙地,途中在加油站加了一次油,加油時,車載電腦顯示還能行駛50千米.假設(shè)加油前、后汽車都以100千米/小時的速度勻速行駛,已知油箱中剩余油量y(升)與行駛時間t(小時)之間的關(guān)系如圖所示.
(1)求張師傅加油前油箱剩余油量y(升)與行駛時間t(小時)之間的關(guān)系式;
(2)求出a的值;
(3)求張師傅途中加油多少升?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商廈用8萬元購進(jìn)紀(jì)念運動休閑衫,面市后供不應(yīng)求,商廈又用17.6萬元購進(jìn)了第二批這種襯衫,所購數(shù)量是第一批購進(jìn)數(shù)量的2倍,但單價貴了8元,商廈銷售這種運動休閑衫時每件定價都是100元,最后剩下的150件按八折銷售,很快售完.
(1)商廈第一批和第二批各購進(jìn)休閑衫多少件?
(2)請問在這兩筆生意中,商廈共盈利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,BC=3,點E在邊AB上,點F在邊CD上,點G、H在對角線AC上,若四邊形EGFH是菱形,則AE的長是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD中,AB∥DC,連接BD,BE平分∠ABD,BE⊥AD,∠EBC和∠DCB的角平分線相交于點F,若∠ADC=110°,則∠F的度數(shù)為( 。
A. 115° B. 110° C. 105° D. 100°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com