(2005•揚州)(1)請在如圖所示的方格紙中,將△ABC向上平移3格,再向右平移6格,得△A1B1C1,再將△A1B1C1繞點B1按順時針方向旋轉(zhuǎn)90°,得△A2B1C2,最后將△A2B1C2以點C2為位似中心放大到2倍,得△A3B3C2;
(2)請在方格紙的適當(dāng)位置畫上坐標(biāo)軸(一個小正方形的邊長為1個單位長度),在你所建立的直角坐標(biāo)系中,點C、C1、C2的坐標(biāo)分別為:點C______、點C1______、點C2______.

【答案】分析:(1)各對應(yīng)點按要求平移相應(yīng)的單位格即可得到新的對應(yīng)點,連接三點即可;再把得到的新圖形繞點B1按順時針方向旋轉(zhuǎn)90°,得△A2B1C2,最后將△A2B1C2以點C2為位似中心放大到2倍,得△A3B3C2;
(2)本題是一道開放題,但要找的坐標(biāo)要便于標(biāo)三點的坐標(biāo),所以最好以一個頂點為原點最好.
解答:解:
(1)答案見下圖,三個變換圖形中,每畫對1個得(1分);
(2)此題答案不唯一,若建立如圖的坐標(biāo)系,答案分別為(0,0),(6,3),(3,0).
每答對一個點的坐標(biāo)得(1分).
點評:做這類題的關(guān)鍵是掌握平移,旋轉(zhuǎn),及坐標(biāo)系的有關(guān)知識.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2005•揚州)某水果批發(fā)商場經(jīng)銷一種高檔水果,如果每千克盈利10元,每天可售出500千克.經(jīng)市場調(diào)查發(fā)現(xiàn),在進(jìn)貨價不變的情況下,若每千克漲價1元,日銷售量將減少20千克.現(xiàn)該商場要保證每天盈利6 000元,同時又要使顧客得到實惠,那么每千克應(yīng)漲價
5
5
元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年江蘇省鹽城市阜寧縣GSJY中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

(2005•揚州)已知拋物線y=x2+(2n-1)x+n2-1(n為常數(shù)).
(1)當(dāng)該拋物線經(jīng)過坐標(biāo)原點,并且頂點在第四象限時,求出它所對應(yīng)的函數(shù)關(guān)系式;
(2)設(shè)A是(1)所確定的拋物線上位于x軸下方、且在對稱軸左側(cè)的一個動點,過A作x軸的平行線,交拋物線于另一點D,再作AB⊥x軸于B,DC⊥x軸于C.
①當(dāng)BC=1時,求矩形ABCD的周長;
②試問矩形ABCD的周長是否存在最大值?如果存在,請求出這個最大值,并指出此時A點的坐標(biāo).如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(03)(解析版) 題型:填空題

(2005•揚州)二次函數(shù)y=ax2+bx+c(a≠0)的部分對應(yīng)值如右表,則不等式ax2+bx+c>0的解集為   
x-3-2-11234
y6-4-6-6-46

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年福建省福州市馬尾區(qū)中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2005•揚州)已知拋物線y=x2+(2n-1)x+n2-1(n為常數(shù)).
(1)當(dāng)該拋物線經(jīng)過坐標(biāo)原點,并且頂點在第四象限時,求出它所對應(yīng)的函數(shù)關(guān)系式;
(2)設(shè)A是(1)所確定的拋物線上位于x軸下方、且在對稱軸左側(cè)的一個動點,過A作x軸的平行線,交拋物線于另一點D,再作AB⊥x軸于B,DC⊥x軸于C.
①當(dāng)BC=1時,求矩形ABCD的周長;
②試問矩形ABCD的周長是否存在最大值?如果存在,請求出這個最大值,并指出此時A點的坐標(biāo).如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年海南省?谑兄锌紨(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2005•揚州)已知拋物線y=x2+(2n-1)x+n2-1(n為常數(shù)).
(1)當(dāng)該拋物線經(jīng)過坐標(biāo)原點,并且頂點在第四象限時,求出它所對應(yīng)的函數(shù)關(guān)系式;
(2)設(shè)A是(1)所確定的拋物線上位于x軸下方、且在對稱軸左側(cè)的一個動點,過A作x軸的平行線,交拋物線于另一點D,再作AB⊥x軸于B,DC⊥x軸于C.
①當(dāng)BC=1時,求矩形ABCD的周長;
②試問矩形ABCD的周長是否存在最大值?如果存在,請求出這個最大值,并指出此時A點的坐標(biāo).如果不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案