如圖,正方形DEFG的邊EF在△ABC的邊BC上,D,G分別在邊AB,AC上,AH⊥BC,BC=10,AH=6,則正方形邊長為   
【答案】分析:由DG∥BC得△ADG∽△ABC,利用相似三角形對應(yīng)邊上高的比等于相似比,列方程求解.
解答:解:設(shè)正方形的邊長為x.
由正方形DEFG得,DG∥EF,即DG∥BC,
∵AH⊥BC,
∴AP⊥DG.
由DG∥BC得△ADG∽△ABC
=
∵PH⊥BC,DE⊥BC
∴PH=ED,AP=AH-PH,
=,
由BC=10,AH=6,DE=DG=x,
=,
解得x=
故正方形DEFG的邊長是
故答案為:
點評:本題考查了相似三角形的判定與性質(zhì).關(guān)鍵是由平行線得到相似三角形,利用相似三角形的性質(zhì)列方程.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,正方形DEFG的邊EF在△ABC的邊BC上,頂點D、G分別在邊AB、AC上,AH⊥BC,垂足為H.已知BC=12,AH=8,求正方形DEFG的邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,正方形DEFG內(nèi)接入Rt△ABC,EF在斜邊BC上,EH⊥AB于H.
求證:(1)△ADG≌△HED;(2)EF2=BE•FC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,正方形DEFG的邊EF在△ABC的邊BC上,D,G分別在邊AB,AC上,AH⊥BC,BC=10,AH=6,則正方形邊長為
15
4
15
4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,正方形DEFG的邊EF在△ABC的邊BC上,頂點D、G分別在邊AB、AC上,AH⊥BC,垂足為H.已知BC=12,AH=8,求正方形DEFG的邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:如圖,正方形DEFG內(nèi)接入Rt△ABC,EF在斜邊BC上,EH⊥AB于H.
求證:(1)△ADG≌△HED;(2)EF2=BE•FC.

查看答案和解析>>

同步練習(xí)冊答案