【題目】如圖(1),等腰直角三角形ABC的底邊AB=4,點(diǎn)D在線段AC上,DE⊥AB于E,現(xiàn)將△ADE沿DE折起到△PDE的位置(如圖(2)).
(Ⅰ)求證:PB⊥DE;
(Ⅱ)若PE⊥BE,直線PD與平面PBC所成的角為30°,求PE長.

【答案】解:(Ⅰ)∵DE⊥AB,∴DE⊥BE,DE⊥PE, ∵BE∩PE=E,∴DE⊥平面PEB,
又∵PB平面PEB,∴BP⊥DE;
(Ⅱ)∵PE⊥BE,PE⊥DE,DE⊥BE,
∴分別以DE、BE、PE所在直線為x軸、y軸、z軸建立空間直角坐標(biāo)系(如圖)

設(shè)PE=a,則B(0,4﹣a,0),D(a,0,0),C(2,2﹣a,0),
P(0,0,a),
可得 , ,
設(shè)面PBC的法向量 ,
令y=1,可得x=1,z=
因此 是面PBC的一個法向量,
,PD與平面PBC所成角為30°,
,即 ,
解之得:a= ,或a=4(舍),因此可得PE的長為
【解析】(I)根據(jù)翻折后DE仍然與BE、PE垂直,結(jié)合線面垂直的判定定理可得DE⊥平面PEB,再由線面垂直的性質(zhì)可得PB⊥DE;(II)分別以DE、BE、PE所在直線為x軸、y軸、z軸,建立如圖所示空間直角坐標(biāo)系.設(shè)PE=a,可得點(diǎn)B、D、C、P關(guān)于a的坐標(biāo)形式,從而得到向量 坐標(biāo),利用垂直向量數(shù)量積為0的方法建立方程組,解出平面PCD的一個法向量為 =(1,1, ),由PD與平面PBC所成的角為30°和向量 的坐標(biāo),建立關(guān)于參數(shù)a的方程,解之即可得到線段PE的長.
【考點(diǎn)精析】利用直線與平面垂直的判定和空間角的異面直線所成的角對題目進(jìn)行判斷即可得到答案,需要熟知一條直線與一個平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點(diǎn):a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想;已知為兩異面直線,A,C與B,D分別是上的任意兩點(diǎn),所成的角為,則

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】目前,我國大約有1.3億高血壓病患者,占15歲以上總?cè)丝跀?shù)的10%﹣15%,預(yù)防高血壓不容忽視!扒羕pa”和“毫米汞柱mmHg”都是表示血壓的單位,前者是法定的國際計量單位,而后者則是過去一直廣泛使用的慣用單位。請你根據(jù)下表所提供的信息,判斷下列各組換算不正確的是( )

千帕kpa

10

12

16

毫米汞柱mmHg

75

90

120


A.18kpa=135mmHg
B.21kpa=150mmHg
C.8kpa=60mmHg
D.32kpa=240mmHg

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xoy中,曲線C的參數(shù)方程為 (t為參數(shù),a>0)以坐標(biāo)原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸,建立極坐標(biāo)系,已知直線l的極坐標(biāo)方程為 . (Ⅰ)設(shè)P是曲線C上的一個動點(diǎn),當(dāng)a=2時,求點(diǎn)P到直線l的距離的最小值;
(Ⅱ)若曲線C上的所有點(diǎn)均在直線l的右下方,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從甲地到乙地的鐵路路程約為615千米,高鐵速度為300千米/小時,直達(dá);動車速度為200千米/小時,行駛180千米后,中途要?啃熘10分鐘,若動車先出發(fā)半小時,兩車與甲地之間的距離y(千米)與動車行駛時間x(小時)之間的函數(shù)圖象為( 。

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有四個函數(shù):①y=xsinx;②y=xcosx;③y=x|cosx|;④y=x2x的圖象(部分)如圖:
則按照從左到右圖象對應(yīng)的函數(shù)序號安排正確的一組是(
A.①④③②
B.③④②①
C.④①②③
D.①④②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,棱柱ABCD﹣A1B1C1D1中,底面ABCD是平行四邊形,側(cè)棱AA1⊥底面ABCD,AB=1,AC= ,BC=BB1=2.
(Ⅰ)求證:AC⊥平面ABB1A1;
(Ⅱ)求二面角A﹣C1D﹣C的平面角的余弦值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校設(shè)計了一個實(shí)驗(yàn)學(xué)科的實(shí)驗(yàn)考查方案:考生從6道備選題中一次性隨機(jī)抽取3題,按照題目要求獨(dú)立完成全部實(shí)驗(yàn)操作.規(guī)定:至少正確完成其中2題獲得學(xué)分2分,便可通過考察.已知6道備選題中考生甲有4題能正確完成:考生乙每題正確完成的概率都是 ,且每題正確完成與否互不影響.求: (Ⅰ)分別寫出甲、乙兩考生正確完成題數(shù)的概率分布列,并計算數(shù)學(xué)期望;
(Ⅱ)請你判斷兩考生的實(shí)驗(yàn)操作學(xué)科能力,比較他們能通過本次考查的可能性大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某廠有4臺大型機(jī)器,在一個月中,一臺機(jī)器至多出現(xiàn)1次故障,且每臺機(jī)器是否出現(xiàn)故障是相互獨(dú)立的,出現(xiàn)故障時需1名維修工人進(jìn)行維修,每臺機(jī)器出現(xiàn)故障需要維修的概率為 . (Ⅰ)若出現(xiàn)故障的機(jī)器臺數(shù)為x,求x的分布列;
(Ⅱ)該廠至少有多少名維修工人才能保證每臺機(jī)器在任何時刻同時出現(xiàn)故障時能及時進(jìn)行維修的概率不少于90%?
(Ⅲ)已知一名維修工人每月只有維修1臺機(jī)器的能力,每月需支付給每位維修工人1萬元的工資,每臺機(jī)器不出現(xiàn)故障或出現(xiàn)故障能及時維修,就使該廠產(chǎn)生5萬元的利潤,否則將不產(chǎn)生利潤,若該廠現(xiàn)有2名維修工人,求該廠每月獲利的均值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)= +a(x﹣1)﹣2.
(1)當(dāng)a=0時,求函數(shù)f(x)的極值;
(2)若對任意x∈(0,1)∪(1,+∞),不等式 恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案