精英家教網(wǎng)如圖所示,在矩形ABCD中,AB=6厘米,BC=12厘米,點(diǎn)P在線段AB上,P從點(diǎn)A開始沿AB邊以1厘米/秒的速度向點(diǎn)B移動.點(diǎn)E為線段BC的中點(diǎn),點(diǎn)Q從E點(diǎn)開始,沿EC以1厘米/秒的速度向點(diǎn)C移動.如果P、Q同時分別從A、E出發(fā),寫出出發(fā)時間t與△BPQ的面積S的函數(shù)關(guān)系式,求出t的取值范圍.
分析:△BPQ的面積=
1
2
BP×BQ,把相關(guān)數(shù)值代入即可求解,注意得到的相關(guān)線段為非負(fù)數(shù)即可.
解答:解:∵PB=6-t,BE+EQ=6+t,
∴S=
1
2
PB•BQ=
1
2
PB•(BE+EQ)
=
1
2
(6-t)(6+t)
=-
1
2
t2+18,
∴S=-
1
2
t2+18(0≤t<6).
點(diǎn)評:解決本題的關(guān)鍵是找到所求的三角形的面積的等量關(guān)系,注意求自變量的取值應(yīng)從線段長度為非負(fù)數(shù)考慮.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,在矩形ABCD中,AB=6,AD=2
3
,點(diǎn)P是邊BC上的動點(diǎn)(點(diǎn)P不與點(diǎn)B,C重合),過點(diǎn)P作直線PQ∥BD,交CD邊于Q點(diǎn),再把△PQC沿著動直線PQ對折,點(diǎn)C的對應(yīng)點(diǎn)是R點(diǎn).設(shè)CP=x,△PQR與矩形ABCD重疊部分的面積為y.
(1)求∠CPQ的度數(shù).
(2)當(dāng)x取何值時,點(diǎn)R落在矩形ABCD的邊AB上?
(3)當(dāng)點(diǎn)R在矩形ABCD外部時,求y與x的函數(shù)關(guān)系式.并求此時函數(shù)值y的取值范圍.
精英家教網(wǎng)精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在矩形ABCD中,AB=1,BC=2,E是CD邊的中點(diǎn).點(diǎn)P從點(diǎn)A開始,沿逆時針方向在矩形邊上勻速運(yùn)動,到點(diǎn)E停止.設(shè)點(diǎn)P經(jīng)過的路程為x,△APE的面積為S,則S關(guān)于x的函數(shù)關(guān)系的大致圖象是(  )
A、精英家教網(wǎng)B、精英家教網(wǎng)C、精英家教網(wǎng)D、精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,在矩形ABCD中,AB=12cm,BC=5cm,點(diǎn)P沿AB邊從點(diǎn)A開始向點(diǎn)B以2cm/s的速度移動;點(diǎn)Q沿DA邊從點(diǎn)D開始向點(diǎn)A以1cm/s的速度移動.如果P、Q同時出發(fā),當(dāng)Q到達(dá)終點(diǎn)時,精英家教網(wǎng)P也隨之停止運(yùn)動.用t表示移動時間,設(shè)四邊形QAPC的面積為S.
(1)試用t表示AQ、BP的長;
(2)試求出S與t的函數(shù)關(guān)系式;
(3)當(dāng)t為何值時,△QAP為等腰直角三角形?并求出此時S的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,在矩形ABCD中,E為BC上一動點(diǎn),BE=kCE,ED交AC于點(diǎn)P,DQ⊥AC于Q,A精英家教網(wǎng)B=nBC
(1)當(dāng)n=1,k=2時(如圖1),
CP
PQ
=
 
;
(2)當(dāng)n=
2
,k=1時(如圖2),求證:CP=AQ;
(3)若k=1,當(dāng)n=
 
時,有CP⊥DE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,在矩形ABCD中,AB=4cm,BC=8cm、點(diǎn)P從點(diǎn)D出發(fā)向點(diǎn)A運(yùn)動,同時點(diǎn)Q從點(diǎn)B出發(fā)向點(diǎn)C運(yùn)動,點(diǎn)P、Q的速度都是1cm/s.
(1)在運(yùn)動過程中,經(jīng)過
3
3
秒后,四邊形AQCP是菱形;
(2)菱形AQCP的周長為
20
20
cm、面積為
20
20
cm2

查看答案和解析>>

同步練習(xí)冊答案