【題目】如圖,已知Rt△ABC中,∠ABC=90°,先把△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°至△DBE后,再把△ABC沿射線平移至△FEG,DE、FG相交于點(diǎn)H.
(1)判斷線段DE、FG的位置關(guān)系,并說明理由;
(2)連結(jié)CG,求證:四邊形CBEG是正方形.
【答案】(1)FG⊥ED;(2)見解析
【解析】
試題分析:(1)根據(jù)旋轉(zhuǎn)和平移可得∠DEB=∠ACB,∠GFE=∠A,再根據(jù)∠ABC=90°可得∠A+∠ACB=90°,進(jìn)而得到∠DEB+∠GFE=90°,從而得到DE、FG的位置關(guān)系是垂直;
(2)根據(jù)旋轉(zhuǎn)和平移找出對應(yīng)線段和角,然后再證明是矩形,后根據(jù)鄰邊相等可得四邊形CBEG是正方形.
(1)解:FG⊥ED.理由如下:
∵△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°至△DBE后,
∴∠DEB=∠ACB,
∵把△ABC沿射線平移至△FEG,
∴∠GFE=∠A,
∵∠ABC=90°,
∴∠A+∠ACB=90°,
∴∠DEB+∠GFE=90°,
∴∠FHE=90°,
∴FG⊥ED;
(2)證明:根據(jù)旋轉(zhuǎn)和平移可得∠GEF=90°,∠CBE=90°,CG∥EB,CB=BE,
∵CG∥EB,
∴∠BCG=∠CBE=90°,
∴四邊形BCGE是矩形,
∵CB=BE,
∴四邊形CBEG是正方形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知n邊形的每個(gè)外角都等于60°,則它的內(nèi)角和是( )
A. 180° B. 270° C. 360° D. 720°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)D為⊙O上的一點(diǎn),點(diǎn)C在直徑BA的延長線上,并且∠CDA=∠CBD.
(1)求證:CD是⊙O的切線;
(2)過點(diǎn)B作O的切線,交CD的延長線于點(diǎn)E,若BC=12,tan∠CDA=,求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從某玉米種子中抽取6批,在同一條件下進(jìn)行發(fā)芽試驗(yàn),有關(guān)數(shù)據(jù)如下:
種子粒數(shù) | 100 | 400 | 800 | 1000 | 2000 | 5000 |
發(fā)芽種子粒數(shù) | 85 | 318 | 652 | 793 | 1604 | 4005 |
發(fā)芽頻率 | 0.850 | 0.795 | 0.815 | 0.793 | 0.802 | 0.801 |
根據(jù)以上數(shù)據(jù)可以估計(jì),該玉米種子發(fā)芽的概率約為(精確到0.10).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把直線y=﹣x+l沿y軸向上平移一個(gè)單位,得到新直線的關(guān)系式是( )
A.y=﹣x
B.y=﹣x+2
C.y=﹣x﹣2
D.y=﹣2x
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題是假命題的是( )
A.兩組對邊分別相等的四邊形是平行四邊形
B.對角線相等的平行四邊形是矩形
C.對角線垂直的平行四邊形是菱形
D.四條邊相等的四邊形是正方形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)D是線段BC的中點(diǎn),分別以點(diǎn)B,C為圓心,BC長為半徑畫弧,兩弧相交于點(diǎn)A,連接AB,AC,AD,點(diǎn)E為AD上一點(diǎn),連接BE,CE.
(1)求證:BE=CE;
(2)以點(diǎn)E為圓心,ED長為半徑畫弧,分別交BE,CE于點(diǎn)F,G.若BC=4,EB平分∠ABC,求圖中陰影部分(扇形)的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com