如圖,在⊙O中,弦AB=8cm,OC⊥AB于C,OC=3cm,則⊙O的直徑長(zhǎng)是( )

A.5cm
B.10cm
C.8cm
D.6cm
【答案】分析:由于OC⊥AB,根據(jù)垂徑定理可知AC=4,在Rt△AOC中利用勾股定理易求OA,進(jìn)而可求⊙O直徑.
解答:解:如右圖,
∵OC⊥AB,
∴AC=BC=AB=4,
在Rt△AOC中,OA===5,
∴⊙O直徑=2OA=10,
故選B.
點(diǎn)評(píng):本題考查了垂徑定理、勾股定理,解題的關(guān)鍵是先求出AC.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,在⊙O中,弦AD=BC.求證:AB=CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

4、如圖,在⊙O中,弦BC∥半徑OA,AC與OB相交于M,∠C=20°,則∠AMB的度數(shù)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在⊙M中,弦AB所對(duì)的圓心角為120度,已知圓的半徑為2cm,并建立如圖所示的直角坐精英家教網(wǎng)標(biāo)系.
(1)求圓心M的坐標(biāo);
(2)求經(jīng)過(guò)A,B,C三點(diǎn)的拋物線(xiàn)的解析式;
(3)設(shè)點(diǎn)P是⊙M上的一個(gè)動(dòng)點(diǎn),當(dāng)△PAB為Rt△PAB時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在⊙O中,弦AB=BC=CD,且∠ABC=140°,則∠AED=(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在⊙O中,弦AB與CD相交于點(diǎn)P,連接AC、DB.
(1)求證:△PAC∽△PDB;
(2)當(dāng)
AC
DB
為何值時(shí),
S△PAC
S△PDB
=4?

查看答案和解析>>

同步練習(xí)冊(cè)答案