精英家教網 > 初中數學 > 題目詳情

【題目】如圖,一段拋物線y=﹣xx﹣2)(0≤x≤2)記為C1,它與x軸交于兩點O,A1;C1A1旋轉180°得到C2,交x軸于A2;將C2A2旋轉180°得到C3,交x軸于A3;…如此進行下去,直至得到C6,若點P(11,m)在第6段拋物線C6,m=_____

【答案】-1

【解析】將這段拋物線C1通過配方法求出頂點坐標及拋物線與x軸的交點,由旋轉的性質可以知道C1C2的頂點到x軸的距離相等,且OA1=A1A2,照此類推可以推導知道點P(11,m)為拋物線C6的頂點,從而得到結果.

解:∵y=﹣x(x﹣2)(0≤x≤2),

∴配方可得y=﹣(x﹣1)2+1(0≤x≤2),

∴頂點坐標為(1,1),

A1坐標為(2,0)

C2C1旋轉得到,

OA1=A1A2,即C2頂點坐標為(3,﹣1),A2(4,0);

照此類推可得,C3頂點坐標為(5,1),A3(6,0);

C4頂點坐標為(7,﹣1),A4(8,0);

C5頂點坐標為(9,1),A5(10,0);

C6頂點坐標為(11,﹣1),A6(12,0);

m=﹣1.

故答案為:﹣1.

“點睛”本題考查了二次函數的性質及旋轉的性質,解題的關鍵是求出拋物線的頂點坐標.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,兩個半徑相等的直角扇形的圓心分別在對方的圓弧上,半徑AE、CF交于點G,半徑BE、CD交于點H.且點C是的中點,若扇形的半徑為3.則圖中陰影部分的面積等于______.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】若一粒米的質量約是0.0000021 kg,將數據0.0000021用科學記數法表示為( )

A. 21×105B. 2.1×107C. 2.1×105D. 2.1×106

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某校初三(3)班的同學踴躍為“雅安蘆山地震”捐款,根據捐款情況(捐款數為正數)制作以下統(tǒng)計圖表,但生活委員不小心把墨水滴在統(tǒng)計表上,部分數據看不清楚。

(1)全班有多少人捐款?

(2)如果捐款0~20元的人數在扇形統(tǒng)計圖中所占的圓心角為72°,那么捐款21~40元的有多少人?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,正方形ABCD中,G是BC中點,DE⊥AG于E,BF⊥AG于F,GN∥DE,M是BC延長線上一點。

(1)求證:△ABF≌△DAE

(2)尺規(guī)作圖:作∠DCM的平分線,交GN于點H(保留作圖痕跡,不寫作法和證明),試證明GH=AG。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,大海中某島C的周圍25km范圍內有暗礁.一艘海輪向正東方向航行,在A處望見C在北偏東60°處,前進20km后到達點B,測得C在北偏東45°處.如果該海輪繼續(xù)向正東方向航行,有無觸礁危險?請說明理由.(參考數據: ≈1.41, ≈1.73)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABC中,∠ACB=90°,BC=m,AB=3m,AC=n

1)將ABC繞點B逆時針旋轉,使點C落在AB邊上的點C1處,點A落在點A1處,在圖中畫出A1BC1;

2)求四邊形ACBA1的面積;(用m、n的代數式表示)

3)將A1BC1沿著AB翻折得A2BC1,A2C1AC于點D,寫出四邊形BCDC1與三角形ABC的面積的比值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,矩形紙片ABCD中,AB=6cm,AD=10cm,點E、F在矩形ABCD的邊AB、AD上運動,將△AEF沿EF折疊,使點A′在BC邊上,當折痕EF移動時,點A′在BC邊上也隨之移動.則A′C的取值范圍為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】正方形ABCD中,點O是對角線DB的中點,點P是DB所在直線上的一個動點,PE⊥BC于E,PF⊥DC于F.

(1)當點P與點O重合時(如圖①),猜測AP與EF的數量及位置關系,并證明你的結論;
(2)當點P在線段DB上(不與點D、O、B重合)時(如圖②),探究(1)中的結論是否成立?若成立,寫出證明過程;若不成立,請說明理由;
(3)當點P在DB的長延長線上時,請將圖③補充完整,并判斷(1)中的結論是否成立?若成立,直接寫出結論;若不成立,請寫出相應的結論.

查看答案和解析>>

同步練習冊答案