既不是分?jǐn)?shù)也不是0的有理數(shù)是
 
考點(diǎn):有理數(shù)
專題:
分析:根據(jù)有理數(shù)的分類解答.
解答:解:既不是分?jǐn)?shù)也不是0的有理數(shù)是正整數(shù)和負(fù)整數(shù).
故答案為:正整數(shù)和負(fù)整數(shù).
點(diǎn)評(píng):本題考查了有理數(shù),熟記有理數(shù)的分類和定義是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

甲、乙兩商店共有練習(xí)冊(cè)200冊(cè),第一天甲店售出19冊(cè),乙店售出97冊(cè),甲、乙兩店所剩的練習(xí)冊(cè)冊(cè)數(shù)相等.求:甲店練習(xí)冊(cè)的冊(cè)數(shù)及乙店練習(xí)冊(cè)的冊(cè)數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系中,四邊形CODF為直角梯形,DF∥OC,OC=3DF,點(diǎn)B、C在x軸上,且點(diǎn)B、C到坐標(biāo)原點(diǎn)O的距離的比為1:3,點(diǎn)A、D在y軸上,且AD的長為4,若tan∠OCF=3,sin∠ABO=
2
5

(1)求A、B、C三點(diǎn)坐標(biāo).
(2)點(diǎn)E在直線CF上,點(diǎn)E的橫坐標(biāo)為-2,在直線L:y=
4
3
x+4上存在某點(diǎn)P使直線PE與y軸相交所成的銳角等于∠ABO,求出點(diǎn)P坐標(biāo)及直線PE的解析式.
(3)半徑為
8
5
的⊙M從原點(diǎn)出發(fā),沿x軸負(fù)方向運(yùn)動(dòng);半徑為
2
5
5
的⊙N從原點(diǎn)出發(fā),沿y軸正方向運(yùn)動(dòng),如果⊙M、⊙N同時(shí)出發(fā)且速度相同,當(dāng)⊙M與直線y=
4
3
x+4相切時(shí),試判斷⊙N與②中所求的直線的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

M、N兩點(diǎn)的距離是20cm,有一點(diǎn)P,如果PM+PN=20cm,那么下面結(jié)論正確的是( 。
A、P點(diǎn)必在線段MN上
B、P點(diǎn)在線段MN外
C、P點(diǎn)必在直線MN上
D、P點(diǎn)在直線MN外

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

對(duì)于多項(xiàng)式-x3-3x2+x-7,下列說法正確的是(  )
A、最高次項(xiàng)是-x3
B、二次項(xiàng)系數(shù)是3
C、是五次四項(xiàng)式
D、常數(shù)項(xiàng)是7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

圓是軸對(duì)稱圖形,它的對(duì)稱軸有
 
條.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

下列各圖形的對(duì)稱軸條數(shù)之和為(  )
A、5B、6C、9D、11

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,點(diǎn)P是拋物線C:y=ax2在第一象限內(nèi)上的一點(diǎn),連接 OP,過點(diǎn)O作OP的垂線交拋物線于另一點(diǎn)Q,連接PQ,交y軸于點(diǎn)M.

(1)如圖1,若PQ∥x軸,且PQ=2,求拋物線C的解析式;
(2)如圖2,過點(diǎn)P作PA丄x軸于點(diǎn)A,設(shè)點(diǎn)P的橫坐標(biāo)為m.
①用含m的代數(shù)式表示點(diǎn)Q的橫坐標(biāo)為
 

②連接AM,求證:AM∥OQ;
(3)如圖3,將拋物線C:y=ax2作關(guān)于x軸的軸對(duì)稱變換,然后平移經(jīng)過P,Q兩點(diǎn)得到拋物線C′,設(shè)拋物線C′的頂點(diǎn)為R,判斷四邊形OPRQ的形狀?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系中,直線y=-x-1分別交x軸、y軸于點(diǎn)A、點(diǎn)B,交雙曲線于點(diǎn)C(3,n).拋物線y=ax2+
3
2
x+c(a≠0)
過點(diǎn)B,且與該雙曲線交于點(diǎn)D,點(diǎn)D的縱坐標(biāo)為-3.
(1)求該雙曲線與拋物線的解析式;
(2)若點(diǎn)P為該拋物線上一點(diǎn),點(diǎn)Q為該雙曲線上一點(diǎn),且P、Q兩點(diǎn)的縱坐標(biāo)都為-2,求線段PQ的長;
(3)若點(diǎn)M沿直線從點(diǎn)A運(yùn)動(dòng)到點(diǎn)C,再沿雙曲線從點(diǎn)C運(yùn)動(dòng)到點(diǎn)D,過點(diǎn)M作MN⊥x軸,交拋物線于點(diǎn)N.設(shè)線段MN的長度為d,點(diǎn)M的橫坐標(biāo)為m,直接寫出d的最大值,以及d隨m的增大而減小時(shí)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案