當(dāng)a=,b=-5時(shí),計(jì)算-3a2b的值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:廣東省汕頭市金平區(qū)2011屆九年級畢業(yè)模擬考試數(shù)學(xué)試題 題型:044

閱讀材料并解答問題:

與正三角形各邊都相切的圓叫做正三角形的內(nèi)切圓,與正四邊形各邊都相切的圓叫做正四邊形的內(nèi)切圓,…,與正n邊形各邊都相切的圓叫做正n邊形的內(nèi)切圓,設(shè)正n(n≥3)邊形的面積為S正n邊形,其內(nèi)切圓的半徑為r,試探索正n邊形的面積.(結(jié)果可用三角函數(shù)表示)

如圖①,當(dāng)n=3時(shí),設(shè)AB切圓O于點(diǎn)C,連結(jié)OC,OA,OB,

∴OC⊥AB,OA=OB,∴∠AOC=AOB,AB=2BC.

在Rt△AOC中,,OC=r,

∴AC=r·tan60°,AB=2r·tan60°,

∴S△OAB·r·2rtan60°=r2tan60°,

∴S正三角形=3S△OAB=3r2·tan60°.

(1)如圖②,當(dāng)n=4時(shí),仿照(1)中的方法和過程可求得:S正四邊形=________;

(2)如圖③,當(dāng)n=5時(shí),仿照(1)中的方法和過程S正五邊形;

(3)如圖④,根據(jù)以上探索過程,請直接寫出S正n邊形________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013屆江蘇省徐州市中考模擬數(shù)學(xué)試卷(B卷)(帶解析) 題型:填空題

如果記y==f(x),并且f(1)表示當(dāng)x=1時(shí)y的值,即f(1)=;f()表示當(dāng)x=時(shí)y的值,即f()=;那么f(1)+f(2)+f()+f(3)+f()+…+f(2013)+f()=     

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:湖北省鄂州市2011年中考數(shù)學(xué)試題 題型:解答題

數(shù)學(xué)課堂上,徐老師出示一道試題:
如圖(十)所示,在正三角形ABC中,M是BC邊(不含端點(diǎn)B、C)上任意一點(diǎn),P是BC延長線上一點(diǎn),N是∠ACP的平分線上一點(diǎn).若∠AMN=60°,求證:AM=MN.
(1)經(jīng)過思考,小明展示了一種正確的證明過程.請你將證明過程補(bǔ)充完整.
證明:在AB上截取EA=MC,連結(jié)EM,得△AEM.
∵∠1=180°-∠AMB-∠AMN,∠2=180°-∠AMB-∠B,∠AMN=∠B=60°,∴∠1=∠2.
又CN平分∠ACP,∠4=∠ACP=60°.∴∠MCN=∠3+∠4=120°…………①
又∵BA=BC,EA=MC,∴BA-EA=BC-MC,即BE=BM.
∴△BEM為等邊三角形.∴∠6=60°.
∴∠5=180°-∠6=120°.………②
∴由①②得∠MCN=∠5.
在△AEM和△MCN中,
                                            
∴△AEM≌△MCN (ASA).∴AM=MN.
(2)若將試題中的“正三角形ABC”改為“正方形A1B1C1D1”(如圖),N1是∠D1C1P1的平分線上一點(diǎn),則當(dāng)∠A1M1N1=90°時(shí),結(jié)論A1M1=M1N1.是否還成立?(直接寫出答案,不需要證明)
(3) 若將題中的“正三角形ABC”改為“正多邊形AnBnCnDn…Xn”,請你猜想:當(dāng)∠AnMnNn   °時(shí),結(jié)論AnMn=MnNn仍然成立?(直接寫出答案,不需要證明)
    

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年初中畢業(yè)升學(xué)考試(山東泰安卷)數(shù)學(xué)解析版 題型:解答題

數(shù)學(xué)課堂上,徐老師出示一道試題:如圖(十)所示,在正三角形ABC中,MBC邊(不含端點(diǎn)B、C)上任意一點(diǎn),PBC延長線上一點(diǎn),N是∠ACP的平分線上一點(diǎn).若∠AMN=60°,求證:AMMN
    
(1)經(jīng)過思考,小明展示了一種正確的證明過程.請你將證明過程補(bǔ)充完整.
證明:在AB上截取EAMC,連結(jié)EM,得△AEM
∵∠1=180°-∠AMB-∠AMN,∠2=180°-∠AMB-∠B,∠AMN=∠B=60°,∴∠1=∠2.
CN平分∠ACP,∠4=∠ACP=60°.∴∠MCN=∠3+∠4=120°…………①
又∵BABCEAMC,∴BAEABCMC,即BEBM
∴△BEM為等邊三角形.∴∠6=60°.
∴∠5=180°-∠6=120°.………②
∴由①②得∠MCN=∠5.
在△AEM和△MCN中,
∵_(dá)_______________________________
∴△AEM≌△MCN (ASA).∴AMMN
(2)若將試題中的“正三角形ABC”改為“正方形A1B1C1D1”(如圖),N1是∠D1C1P1的平分線上一點(diǎn),則當(dāng)∠A1M1N1=90°時(shí),結(jié)論A1M1M1N1.是否還成立?(直接寫出答案,不需要證明)
(3)若將題中的“正三角形ABC”改為“正多邊形AnBnCnDnXn”,請你猜想:當(dāng)∠AnMnNn   °時(shí),結(jié)論AnMnMnNn仍然成立?(直接寫出答案,不需要證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:湖北省鄂州市2011年中考數(shù)學(xué)試題 題型:解答題

數(shù)學(xué)課堂上,徐老師出示一道試題:

    如圖(十)所示,在正三角形ABC中,M是BC邊(不含端點(diǎn)B、C)上任意一點(diǎn),P是BC延長線上一點(diǎn),N是∠ACP的平分線上一點(diǎn).若∠AMN=60°,求證:AM=MN.

(1)經(jīng)過思考,小明展示了一種正確的證明過程.請你將證明過程補(bǔ)充完整.

    證明:在AB上截取EA=MC,連結(jié)EM,得△AEM.

    ∵∠1=180°-∠AMB-∠AMN,∠2=180°-∠AMB-∠B,∠AMN=∠B=60°,∴∠1=∠2.

    又CN平分∠ACP,∠4=∠ACP=60°.∴∠MCN=∠3+∠4=120°…………①

又∵BA=BC,EA=MC,∴BA-EA=BC-MC,即BE=BM.

∴△BEM為等邊三角形.∴∠6=60°.

∴∠5=180°-∠6=120°.………②

∴由①②得∠MCN=∠5.

在△AEM和△MCN中,

                                            

∴△AEM≌△MCN (ASA).∴AM=MN.

(2)若將試題中的“正三角形ABC”改為“正方形A1B1C1D1”(如圖),N1是∠D1C1P1的平分線上一點(diǎn),則當(dāng)∠A1M1N1=90°時(shí),結(jié)論A1M1=M1N1.是否還成立?(直接寫出答案,不需要證明)

(3) 若將題中的“正三角形ABC”改為“正多邊形AnBnCnDn…Xn”,請你猜想:當(dāng)∠AnMnNn    °時(shí),結(jié)論AnMn=MnNn仍然成立?(直接寫出答案,不需要證明)

    

 

 

查看答案和解析>>

同步練習(xí)冊答案