【題目】2020賀歲片《囧媽》提檔大年三十網(wǎng)絡(luò)首播.“樂(lè)調(diào)查平臺(tái)為了全面了解觀眾對(duì)《囧媽》的滿意度情況,進(jìn)行隨機(jī)抽樣調(diào)查,分為四個(gè)類別:.非常滿意;.滿意;.基本滿意;.不滿意,依據(jù)調(diào)查數(shù)據(jù)繪制成圖1和圖2的統(tǒng)計(jì)圖(不完整).

根據(jù)以上信息,解答下列問(wèn)題:

1)本次接受調(diào)查的觀眾共有_______人;

2)扇形統(tǒng)計(jì)圖中,扇形的圓心角度數(shù)是_______

3)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;

4)“樂(lè)調(diào)查”平臺(tái)調(diào)查了春節(jié)期間觀看《固媽》的觀眾約5000人,請(qǐng)估計(jì)觀眾對(duì)該電影的滿意(、類視為滿意)的人數(shù).

【答案】1100;(2;(3)作圖見(jiàn)解析;(4)估計(jì)觀眾對(duì)該電影的滿意(A、B、C類視為滿意)的人數(shù)為4500人.

【解析】

1)利用B的人數(shù)除以B所占百分比可得答案;
2)用360°乘以C所占比例可得扇形C的圓心角度數(shù);
3)用總?cè)藬?shù)減去B、CD三類人數(shù)可得A類人數(shù),再補(bǔ)圖即可;
4)利用樣本估計(jì)總體的方法計(jì)算即可.

1)本次接受調(diào)查的觀眾:25÷25%100(人),
故答案為:100;
2)扇形C的圓心角度數(shù)是:360°×54°
故答案為:54°
3A類別的人數(shù):10025151050(人),
如圖所示;

45000×
4500(人),
答:估計(jì)觀眾對(duì)該電影的滿意(A、B、C類視為滿意)的人數(shù)為4500人.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=(x-a)(x-3)(0<a<3)的圖象與x軸交于點(diǎn)A、B(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)D,過(guò)其頂點(diǎn)C作直線CPx軸,垂足為點(diǎn)P,連接AD、BC.

(1)求點(diǎn)A、B、D的坐標(biāo);

(2)AODBPC相似,求a的值;

(3)點(diǎn)D、O、C、B能否在同一個(gè)圓上,若能,求出a的值,若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AD是⊙O的直徑,以A為圓心,弦AB為半徑畫弧交⊙O于點(diǎn)C,連結(jié)BCAD于點(diǎn)E,若DE3,BC8,則⊙O的半徑長(zhǎng)為(

A.B.5C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】鐘南山院士談到防護(hù)新型冠狀病毒肺炎時(shí)說(shuō):“我們需要重視防護(hù),但也不必恐慌,盡量少去人員密集的場(chǎng)所,出門戴口罩,在室內(nèi)注意通風(fēng),勤洗手,多運(yùn)動(dòng),少熬夜.”…某社區(qū)為了加強(qiáng)社區(qū)居民對(duì)新型冠狀病毒肺炎防護(hù)知識(shí)的了解,通過(guò)微信群宣傳新型冠狀病毒肺炎的防護(hù)知識(shí),并鼓勵(lì)社區(qū)居民在線參與作答《2020年新型冠狀病毒防治全國(guó)統(tǒng)一考試(全國(guó)卷)》試卷,社區(qū)管理員隨機(jī)從甲、乙兩個(gè)小區(qū)各抽取20名人員的答卷成績(jī),并對(duì)他們的成績(jī)(單位:分)進(jìn)行統(tǒng)計(jì)、分析,過(guò)程如下:

收集數(shù)據(jù):

甲小區(qū):

85

80

95

100

90

95

85

65

75

85

90

90

70

90

100

80

80

90

95

75

乙小區(qū):

80

60

80

95

65

100

90

85

85

80

95

75

80

90

70

80

95

75

100

90

整理數(shù)據(jù):

成績(jī) x(分)

60x70

70x80

80x90

90x100

甲小區(qū)

2

5

a

b

乙小區(qū)

3

7

5

5

分析數(shù)據(jù):

統(tǒng)計(jì)量

平均數(shù)

中位數(shù)

眾數(shù)

甲小區(qū)

85.75

87.5

c

乙小區(qū)

83.5

d

80

應(yīng)用數(shù)據(jù):

1)填空: , , ;

2)若甲小區(qū)共有800人參與答卷,請(qǐng)估計(jì)甲小區(qū)成績(jī)大于90分的人數(shù);

3)社區(qū)管理員看完統(tǒng)計(jì)數(shù)據(jù),準(zhǔn)備從成績(jī)?cè)?/span>6070分之間的兩個(gè)小區(qū)中隨機(jī)抽取2人進(jìn)行再測(cè)試,請(qǐng)求出抽取的兩人恰好一個(gè)是甲小區(qū)、一個(gè)是乙小區(qū)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)軸正半軸上,軸,點(diǎn)的橫坐標(biāo)都是,且,點(diǎn)上,若反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn),且

1)求點(diǎn)坐標(biāo);

2)將沿著折疊,設(shè)頂點(diǎn)的對(duì)稱點(diǎn)為,試判斷點(diǎn)是否恰好落在直線上,為什么.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知如圖1,四邊形是正方形,分別在邊、上,且,我們把這種模型稱為“半角模型”,在解決“半角模型”問(wèn)題時(shí),旋轉(zhuǎn)是一種常用的方法.

1)在圖l中,連接,為了證明結(jié)論“”,小亮將繞點(diǎn)順時(shí)針旋轉(zhuǎn)后解答了這個(gè)問(wèn)題,請(qǐng)按小亮的思路寫出證明過(guò)程;

2)如圖2,當(dāng)繞點(diǎn)旋轉(zhuǎn)到圖2位置時(shí),試探究、之間有怎樣的數(shù)量關(guān)系?

3)如圖3,如果四邊形中,,,且,,,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】取三張形狀大小一樣,質(zhì)地完全的相同卡片,在三張卡片上分別寫上“李明、王強(qiáng)、孫偉”這三個(gè)同學(xué)的名字,然后將三張卡片放入一個(gè)不透明的盒子里.

1)林老師從盒子中任取一張,求取到寫有李明名字的卡片概率是多少?

2)林老師從盒子中取出一張卡片,記下名字后放回,再?gòu)暮凶又腥〕龅诙䦶埧ㄆ,記下名字.用列表或畫樹形圖列出林老師取到的卡片的所有可能情況,并求出兩次都取到寫有李明名字的卡片的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在坐標(biāo)平面內(nèi),△ABC的頂點(diǎn)位置如圖所示.

1)將△ABC作平移交換(x,y)→(x+2,y-3)得到,畫出

2)以點(diǎn)O為位似中心縮小得到,使的相似比為12,且點(diǎn)A與其對(duì)應(yīng)點(diǎn)位于點(diǎn)O的兩側(cè),畫出

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)的圖像與二次函數(shù)的圖像交于、兩點(diǎn),點(diǎn)軸上,點(diǎn)的橫坐標(biāo)為4

1________________;

2)設(shè)二次函數(shù)的圖像與軸交于點(diǎn),與軸的另一個(gè)交點(diǎn)為,連接、,求的正弦值;

3點(diǎn)在軸下方二次函數(shù)圖像上,過(guò)點(diǎn)作軸平行線交直線于點(diǎn),以點(diǎn)為圓心,的長(zhǎng)為半徑畫圓,求在直線上截得的弦長(zhǎng)的最大值.

∠ABM=∠ACO,則點(diǎn)M的坐標(biāo)為_________

查看答案和解析>>

同步練習(xí)冊(cè)答案