【題目】如圖,點A、B在反比例函數(shù) 的圖象上,且點A、B的橫坐標分別為a、2a(a>0),AC⊥x軸,垂足為C,且△AOC的面積為2,
(1)求該反比例函數(shù)的解析式;
(2)求△AOB的面積.
【答案】
(1)∵S△AOC=2,
∴k=2S△AOC=4;
∴y= ;
(2)解:連接AB,過點B作BE⊥x軸,
S△AOC=S△BOE=2,
∴A(a, ),B(2a, );
S梯形ACEB= ( + )×(2a﹣a)=3,
∴S△AOB=S△AOC+S梯形ACEB﹣S△BOE=3.
【解析】(1)根據(jù)反比例函數(shù)系數(shù)k的幾何意義,可知S△AOC=|k|,由圖像可知k>0,即可求出反比例函數(shù)的解析式。
(2)連接AB,過點B作BE⊥x軸, 觀察圖像可知S△AOB=S△AOC+S梯形ACEB﹣S△BOE。根據(jù)反比例函數(shù)系數(shù)k的幾何意義,可知S△AOC=S△BOE=2,只需求出梯形ACEB的面積,根據(jù)A、B兩點的坐標及梯形的面積公式易求出它的面積,從而可求得結(jié)果。
【考點精析】解答此題的關鍵在于理解反比例函數(shù)的圖象的相關知識,掌握反比例函數(shù)的圖像屬于雙曲線.反比例函數(shù)的圖象既是軸對稱圖形又是中心對稱圖形.有兩條對稱軸:直線y=x和 y=-x.對稱中心是:原點,以及對比例系數(shù)k的幾何意義的理解,了解幾何意義:表示反比例函數(shù)圖像上的點向兩坐標軸所作的垂線段與兩坐標軸圍成的矩形的面積.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知二次函數(shù) 的圖像經(jīng)過點A(-1,-1)和點B(3,-9).
(1)求該二次函數(shù)的表達式;
(2)寫出該拋物線的對稱軸及頂點坐標;
(3)點P(m , m)與點Q均在該函數(shù)圖像上(其中m>0),且這兩點關于拋物線的對稱軸對稱,求m的值及點Q 到x軸的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AD是∠BAC的平分線,O是AB上一點,以OA為半徑的⊙O經(jīng)過點D。
(1)求證:BC是⊙O切線;
(2)若BD=5, DC=3,求AC的長。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在山頂上有一座電視塔,在塔頂B處,測得地面上一點A的俯角α=60°,在塔底C處測得的俯角β=45°,已知BC=60m,求山高CD(精確到1m, ≈1.732)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在下列解題過程的空白處填上適當?shù)膬?nèi)容(推理的理由或數(shù)學表達式)
如圖,∠1+∠2=1800,∠3=∠4.
求證:EF∥GH.
證明:∵∠1+∠2=1800(已知),
∠AEG =∠1(對頂角相等)
∴ ,
∴AB∥CD( ),
∴∠AEG=∠ ( ),
∵∠3=∠4(已知),
∴∠3+∠AEG=∠4+∠ ,(等式性質(zhì))
∴ ,
∴EF∥GH.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y= x2+bx﹣2與x軸交于A、B兩點,與y軸交于C點,且A(一1,0).
(1)求拋物線的解析式及頂點D的坐標;
(2)判斷△ABC的形狀,證明你的結(jié)論;
(3)點M是拋物線對稱軸上的一個動點,當△ACM周長最小時,求點M的坐標及△ACM的最小周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點O(0,0),A(0,1)是正方形OAA1B的兩個頂點,以OA1對角線為邊作正方形OA1A2B1 , 再以正方形的對角線OA2作正方形OA1A2B1 , …,依此規(guī)律,則點A8的坐標是( )
A.(﹣8,0)
B.(0,8)
C.(0,8 )
D.(0,16)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】作圖題:(不寫作法,但必須保留作圖痕跡)
如圖:某地有兩所大學和兩條相交叉的公路,(點M,N表示大學,AO,BO表示公路).現(xiàn)計劃修建一座物資倉庫,希望倉庫到兩所大學的距離相等,到兩條公路的距離也相等.你能確定倉庫P應該建在什么位置嗎?在所給的圖形中畫出你的設計方案.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ACB中,∠C=90°,AC=30cm,BC=25cm,動點P從點C出發(fā),沿CA方向運動,速度是2cm/s,動點Q從點B出發(fā),沿BC方向運動,速度是1cm/s.
(1)幾秒后P、Q兩點相距25cm?
(2)幾秒后△PCQ與△ABC相似?
(3)設△CPQ的面積為S1 , △ABC的面積為S2 , 在運動過程中是否存在某一時刻t,使得S1:S2=2:5?若存在,求出t的值;若不存在,則說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com