以半徑為1的圓內(nèi)接正三角形、正方形、正六邊形的邊心距為三邊作三角形,則( )
A.不能構(gòu)成三角形
B.這個三角形是等腰三角形
C.這個三角形是直角三角形
D.這個三角形是鈍角三角形
【答案】分析:由于內(nèi)接正三角形、正方形、正六邊形是特殊內(nèi)角的多邊形,可構(gòu)造直角三角形解答.
解答:解:(1)因為OC=1,所以O(shè)D=1×sin30°=;

(2)因為OB=1,所以O(shè)E=1×sin45°=

(3)因為OA=1,所以O(shè)D=1×cos30°=
因為(2+(2=(2
所以這個三角形是直角三角形.

故選C
點評:解答此題要明確:多邊形的半徑、邊心距、中心角等概念,根據(jù)解直角三角形的知識解答.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

以半徑為1的圓內(nèi)接正三角形、正方形、正六邊形的邊心距為三邊作三角形,則( 。
A、不能構(gòu)成三角形B、這個三角形是等腰三角形C、這個三角形是直角三角形D、這個三角形是鈍角三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

以半徑為1的圓內(nèi)接正三角形、正方形、正六邊形的邊長為三邊作三角形,則( 。
A、這個三角形是等腰三角形B、這個三角形是直角三角形C、這個三角形是銳角三角形D、不能構(gòu)成三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•邯鄲一模)嘗試探究:
小張在數(shù)學(xué)實踐活動中,畫了一個Rt△ABC,使∠ACB=90°,BC=1,AC=2,再以B為圓心,BC為半徑畫弧交AB于點D,然后以A為圓心以AD長為半徑畫弧交AC于點E,如圖,則AE=
5
-1
5
-1
;此時小張發(fā)現(xiàn)AE2=AC•EC,請同學(xué)們驗證小張的發(fā)現(xiàn)是否正確.
拓展延伸:
小張利用上圖中的線段AC及點E,接著構(gòu)造AE=EF=CF,連接AF,得到下圖,試完成以下問題:
①求證△ACF∽△FCE
②求∠A的度數(shù);
③求cos∠A

應(yīng)用遷移:
利用上面的結(jié)論,直接寫出:
①半徑為2的圓內(nèi)接正十邊形的邊長為
5
-1
5
-1

②邊長為2的正五邊形的對角線的長為
5
+1
5
+1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年湖北省天門市石河中學(xué)中考數(shù)學(xué)模擬試卷5(解析版) 題型:選擇題

以半徑為1的圓內(nèi)接正三角形、正方形、正六邊形的邊心距為三邊作三角形,則( )
A.不能構(gòu)成三角形
B.這個三角形是等腰三角形
C.這個三角形是直角三角形
D.這個三角形是鈍角三角形

查看答案和解析>>

同步練習冊答案