如圖,在一張三角形的紙片ABC中,已知∠C=90°,∠A=30°,AB=10.將△ABC紙片折疊后使其中的兩個(gè)頂點(diǎn)能夠互相重合,請(qǐng)畫出與說明折痕的各種可能的位置,并求出每條折痕的長(zhǎng).

解:折痕可能位置為△ABC的中位線DE、DF及AB邊的垂直平分線DG,如圖,
在Rt△ABC中,∵∠C=90°,∠A=30°,AB=10,
∴BC=5,AC=5,
當(dāng)點(diǎn)A與點(diǎn)C重合,折痕為△ABC的中位線DE,
∴DE=BC=;
當(dāng)點(diǎn)B與點(diǎn)C重合,折痕為△ABC的中位線DF,
∴DF=AC=;
當(dāng)點(diǎn)A與點(diǎn)B重合,折痕為AB的垂直平分線DG,
∵DG垂直平分AB,
∴AD=AB=5,∠GDA=90°,
∴AD=DG,
∴DG==
分析:先根據(jù)含30度的直角三角形三邊的關(guān)系得到BC=5,AC=5;然后討論:當(dāng)點(diǎn)A與點(diǎn)C重合,折痕為△ABC的中位線DE;當(dāng)點(diǎn)B與點(diǎn)C重合,折痕為△ABC的中位線DF;當(dāng)點(diǎn)A與點(diǎn)B重合,折痕為AB的垂直平分線DG,再分別利用三角形的中位線性質(zhì)和含30度的直角三角形三邊的關(guān)系即可求出三條折痕的長(zhǎng).
點(diǎn)評(píng):本題考查了折疊的性質(zhì):折疊前后兩圖形全等,即對(duì)應(yīng)角相等,對(duì)應(yīng)線段相等.也考查了畫幾何圖的能力、三角形中位線的性質(zhì)以及含30度的直角三角形三邊的關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在一張三角形的紙片ABC中,已知∠C=90°,∠A=30°,AB=10.將△ABC紙片折疊后使其中的兩個(gè)頂點(diǎn)能夠互相重合,請(qǐng)畫出與說明折痕的各種可能的位置,并求出每條折痕的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,一張三角形紙片ABC,∠ACB=90°,AC=8,BC=6.沿斜邊AB的中線CD把這張紙片剪成△AC1D1和△BC2D2兩個(gè)三角形(如圖2),將紙片△AC1D1沿直線D2B(AB)方向平移(點(diǎn)A、D1、D2、B始終在同一直線上),當(dāng)點(diǎn)D1與點(diǎn)B重合時(shí),停止平移.在平移過程中,C1D1與BC2交于點(diǎn)E,AC1與C2D2、BC2分別交于點(diǎn)F、P.
(1)當(dāng)△AC1D1平移到如圖3所示的位置時(shí),猜想圖中的D1E與D2F的數(shù)量關(guān)系,并證明你的猜想;
(2)設(shè)平移距離D2D1為x,△AC1D1與△BC2D2重疊部分面積為y,請(qǐng)寫出y與x的函數(shù)關(guān)系式,并求出函數(shù)y的最值.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,把一張長(zhǎng)方形的紙片ABCD沿BD對(duì)折,使C點(diǎn)落在E點(diǎn)處,BE與AD相交于點(diǎn)O,圖中除了△ABD≌△CDB外,請(qǐng)寫出其他一組全等三角形
△BED≌△BCD,△ABD≌△EDB,△EOD≌△AOB(任意寫出一組即可).
△BED≌△BCD,△ABD≌△EDB,△EOD≌△AOB(任意寫出一組即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在一張三角形的紙片ABC中,已知∠C=90°,∠A=30°,AB=10.將△ABC紙片折疊后使其中的兩個(gè)頂點(diǎn)能夠互相重合,請(qǐng)畫出與說明折痕的各種可能的位置,并求出每條折痕的長(zhǎng).
精英家教網(wǎng)

查看答案和解析>>

同步練習(xí)冊(cè)答案