精英家教網 > 初中數學 > 題目詳情
(1)如圖,已知:AB∥CD,BE⊥AD,垂足為點E,CF⊥AD,垂足為點F,并且AE=DF.
求證:四邊形BECF是平行四邊形.

(2)如圖,AC是⊙O的直徑,弦BD交AC于點E。
①求證:⊿ADE∽⊿BCE;
②如果AD2=AE·AC,求證:CD=CB
1.證明見解析;2.(1)證明見解析;(2)證明見解析.

試題分析:(1)通過全等三角形(△AEB≌△DFC)的對應邊相等證得BE=CF,由“在同一平面內,同垂直于同一條直線的兩條直線相互平行”證得BE∥CF.則四邊形BECF是平行四邊形.
(2)(1)由在同圓或等圓中,同弧或等弧所對的圓周角相等,即可得∠A=∠B,又由對頂角相等,可證得:△ADE∽△BCE;
(2)由AD2=AE•AC,可得,又由∠A是公共角,可證得△ADE∽△ACD,又由AC是⊙O的直徑,以求得AC⊥BD,由垂徑定理即可證得CD=CB.
試題解析:(1)∵BE⊥AD,CF⊥AD,
∴∠AEB=∠DFC=90°,
∵AB∥CD,
∴∠A=∠D,
在△AEB與△DFC中,
,
∴△AEB≌△DFC(ASA),
∴BE=CF.
∵BE⊥AD,CF⊥AD,
∴BE∥CF.
∴四邊形BECF是平行四邊形.
(2)(1)如圖,

∵∠A與∠B是對的圓周角,
∴∠A=∠B,
又∵∠1=∠2,
∴△ADE∽△BCE;
(2)如圖,

∵AD2=AE•AC,
,
又∵∠A=∠A,
∴△ADE∽△ACD,
∴∠AED=∠ADC,
又∵AC是⊙O的直徑,
∴∠ADC=90°,
即∠AED=90°,
∴直徑AC⊥BD,

∴CD=CB.
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:解答題

如圖,在梯形ABCD中 AB‖DC,DB平分∠ADC,過點A作AE‖BD,交CD的延長線于點E,且∠C=2∠E
求證:梯形ABCD是等腰梯形

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,在四邊形ABCD中,AB∥DC, DB平分∠ADC, E是CD的延長線上一點,且
(1)求證:四邊形ABDE是平行四邊形.
(2)若DB⊥CB,∠BCD=60°,CD=12,作AH⊥BD于H,求四邊形AEDH的周長.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,在△ABC中,D、E分別是AB、AC的中點,過點E作EF∥AB,交BC于點F.
(1)求證:四邊形DBFE是平行四邊形;
(2)當△ABC滿足什么條件時,四邊形DBEF是菱形?為什么?

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

如圖所示,EF過矩形ABCD對角線的交點O,且分別交AB,CD于點E,F(xiàn),那么陰影部分的面積是矩形ABCD面積的(    ).
A.B.C.D.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

若口ABCD中一內角平分線和某邊相交把這條邊分成1cm、2cm的兩條線段,則口ABCD的周長是  

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

如圖,正方形ABCD的邊長為6,點O是對角線AC、BD的交點.點E在CD上,且DE=2CE,連接BE.過點C作CF⊥BE,垂足是F,連接OF,則OF的長為         .

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

如圖,平行四邊形中,是四邊形內任意一點, ,,,的面積分別為,則一定成立的是 (      )
A.B.
C.D.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

如圖,在等邊△ABC中,點D、E分別是邊AB、AC的中 點.將△ADE繞點E旋轉180°得△CFE,則四邊形ADCF一定是
A.矩形         B.菱形        C.正方形         D.梯形

查看答案和解析>>

同步練習冊答案