一個(gè)n邊形的內(nèi)角和等于它外角和的5倍,求邊數(shù)n.

 

【答案】

n =12

【解析】根據(jù)多邊形的內(nèi)角和和外角和公式可知  (n-2)180=360×5

              180n-360=1800  或  n-2=10 

                   180n=2160

                     n =12

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知一個(gè)凸十一邊形由若干個(gè)邊長為1的等邊三角形和邊長為1的正方形無重疊,無間隙拼成,則該凸十一邊形的各內(nèi)角中,最小的內(nèi)角大小為
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

我們常用各種多邊形地磚鋪砌成美麗的圖案,也就是說,使用給定的某些多邊形,能夠拼成一個(gè)平面圖形,既不留下一絲空白,又不互相重疊(在幾何里稱為平面密鋪).當(dāng)圍繞一點(diǎn)拼在一起的幾個(gè)多邊形的內(nèi)角和為360°時(shí),就能夠拼成一個(gè)平面圖形.
探究用同一種正多邊形進(jìn)行平面密鋪.
例如:如圖1,用三個(gè)同種類型(大小一樣、形狀相同)的正六邊形地磚可以平面密鋪.
(1)請問僅限于同一種類型的多邊形進(jìn)行密鋪,哪幾種能平面密鋪?
①②
①②
(填序號);
①正三角形    ②正四邊形     ③正五邊形     ④正八邊形
探究用兩種邊長相等的正多邊形進(jìn)行平面密鋪.
例如:如圖2,二個(gè)正三角形和二個(gè)正六邊形可以平面密鋪.
(2)限用兩種邊長相等的正多邊形進(jìn)行平面密鋪,以下哪幾種是可行的?
ABE
ABE

A.正三角形和正方形      B.正方形和正八邊形         C.正方形和正五邊形
D.正八邊形和正六邊形    E.正三角形和正十二邊形    F.正三角形和正五邊形
(3)繼續(xù)推廣到用三種不同的正多邊形進(jìn)行平面密鋪,請寫出符合題意的不同組合.
例如:①正三角形、正方形、正六邊形;
②正三角形、正九邊形、正十八邊形;
正三角形、正四邊形,正十二邊形
正三角形、正四邊形,正十二邊形
;
正三角形,正十邊形,正十五邊形
正三角形,正十邊形,正十五邊形

(4)如果用形狀,大小相同的如圖3方格紙中的三角形,能進(jìn)行平面密鋪嗎?若能,請?jiān)诜礁窦堉挟嫵雒茕伒脑O(shè)計(jì)圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:北大附中題庫 七年級數(shù)學(xué)(上、下學(xué)期用)、測試卷二十 第二學(xué)期期末檢測(二) 題型:044

有一個(gè)十一邊形,它由若干個(gè)邊長為1的等邊三角形和邊長為1的正方形無重疊、無間隙地拼成.求此十一邊形各內(nèi)角的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

我們常用各種多邊形地磚鋪砌成美麗的圖案,也就是說,使用給定的某些多邊形,能夠拼成一個(gè)平面圖形,既不留下一絲空白,又不互相重疊(在幾何里稱為平面密鋪).當(dāng)圍繞一點(diǎn)拼在一起的幾個(gè)多邊形的內(nèi)角和為360°時(shí),就能夠拼成一個(gè)平面圖形.
探究用同一種正多邊形進(jìn)行平面密鋪.
例如:如圖1,用三個(gè)同種類型(大小一樣、形狀相同)的正六邊形地磚可以平面密鋪.
(1)請問僅限于同一種類型的多邊形進(jìn)行密鋪,哪幾種能平面密鋪?______(填序號);
①正三角形 、谡倪呅巍  ③正五邊形   ④正八邊形
探究用兩種邊長相等的正多邊形進(jìn)行平面密鋪.
例如:如圖2,二個(gè)正三角形和二個(gè)正六邊形可以平面密鋪.
(2)限用兩種邊長相等的正多邊形進(jìn)行平面密鋪,以下哪幾種是可行的?______
A.正三角形和正方形   B.正方形和正八邊形     C.正方形和正五邊形
D.正八邊形和正六邊形  E.正三角形和正十二邊形  F.正三角形和正五邊形
(3)繼續(xù)推廣到用三種不同的正多邊形進(jìn)行平面密鋪,請寫出符合題意的不同組合.
例如:①正三角形、正方形、正六邊形;
②正三角形、正九邊形、正十八邊形;
③______;
④______.
(4)如果用形狀,大小相同的如圖3方格紙中的三角形,能進(jìn)行平面密鋪嗎?若能,請?jiān)诜礁窦堉挟嫵雒茕伒脑O(shè)計(jì)圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

我們常用各種多邊形地磚鋪砌成美麗的圖案,也就是說,使用給定的某些多邊形,能夠拼成一個(gè)平面圖形,既不留下一絲空白,又不互相重疊(在幾何里稱為平面密鋪).當(dāng)圍繞一點(diǎn)拼在一起的幾個(gè)多邊形的內(nèi)角和為360°時(shí),就能夠拼成一個(gè)平面圖形.
探究用同一種正多邊形進(jìn)行平面密鋪.
例如:如圖1,用三個(gè)同種類型(大小一樣、形狀相同)的正六邊形地磚可以平面密鋪.
(1)請問僅限于同一種類型的多邊形進(jìn)行密鋪,哪幾種能平面密鋪?______(填序號);
①正三角形    ②正四邊形     ③正五邊形     ④正八邊形
探究用兩種邊長相等的正多邊形進(jìn)行平面密鋪.
例如:如圖2,二個(gè)正三角形和二個(gè)正六邊形可以平面密鋪.
(2)限用兩種邊長相等的正多邊形進(jìn)行平面密鋪,以下哪幾種是可行的?______
A.正三角形和正方形      B.正方形和正八邊形         C.正方形和正五邊形
D.正八邊形和正六邊形    E.正三角形和正十二邊形    F.正三角形和正五邊形
(3)繼續(xù)推廣到用三種不同的正多邊形進(jìn)行平面密鋪,請寫出符合題意的不同組合.
例如:①正三角形、正方形、正六邊形;
②正三角形、正九邊形、正十八邊形;
③______;
④______.
(4)如果用形狀,大小相同的如圖3方格紙中的三角形,能進(jìn)行平面密鋪嗎?若能,請?jiān)诜礁窦堉挟嫵雒茕伒脑O(shè)計(jì)圖.

精英家教網(wǎng)

查看答案和解析>>

同步練習(xí)冊答案