邊長為a ,b 的長方形的面積是(    )。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

O是邊長為a的正多邊形的中心,將一塊半徑足夠長,圓心角為α的扇形紙板的圓心放在O點(diǎn)處,并將紙板繞O點(diǎn)旋轉(zhuǎn).
(1)若正多邊形為正三角形,扇形的圓心角α=120°,請你通過觀察或測量,填空:
①如圖1,正三角形ABC的邊被扇形紙板覆蓋部分的總長度為
 

②如圖2,正三角形ABC的邊被扇形紙板覆蓋部分的總長度為
 
;
(2)若正多邊形為正方形,扇形的圓心角α=90°時(shí),①如圖3,正方形ABCD的邊被扇形紙板覆蓋部分的總長度為
 
;
②如圖4,正方形ABCD的邊被扇形紙板覆蓋部分的總長度為多少?并給予證明;
(3)若正多邊形為正五邊形,如圖5,當(dāng)扇形紙板的圓心角α為
 
時(shí),正五邊形的邊被扇形紙板覆蓋部分的總長度仍為定值a.
(4)一般地,將一塊半徑足夠長的扇形紙板的圓心放在邊長為a的正n邊形的中心O點(diǎn)處,并將紙板繞O點(diǎn)旋轉(zhuǎn).當(dāng)扇形紙板的圓心角為
 
時(shí),正n邊形的邊被扇形紙板覆蓋部分的總長度為定值a.
精英家教網(wǎng)精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

九年級(jí)上冊的教材第118頁有這樣一道習(xí)題:
“在一塊三角形余料ABC中,它的邊BC=120mm,高線AD=80mm.要把它加工成正方形零件(如圖),使正方形的一邊在BC上,其余兩個(gè)頂點(diǎn)分別在AB,AC上.問加工成的正方形零件的邊長為多少mm?”
(1)請你解答上題;
(2)若將上題圖中的正方形PQMN改為矩形,其余條件不變,求矩形PQMN的面積S的最大值;
(3)我們把上面習(xí)題中的正方形PQMN叫做“BC邊上的△ABC的內(nèi)接正方形”,若在習(xí)題的條件下,又知AB=150mm,AC=100mm,請分別寫出AB邊上的△ABC的內(nèi)接正方形的邊長和AC邊上的△ABC的內(nèi)接正方形的邊長(不必寫出過程,只要直接寫出答案即可,結(jié)果精確到1mm);
(4)結(jié)合第(1)、(3)題,若三角形的三邊長分別為a,b,c,各邊上的高分別為ha,hb,hc,要使a邊上的三角形內(nèi)接正方形的面積最大,請寫出a與ha必須滿足的條件(不必寫出過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

作業(yè)寶如圖,在直角坐標(biāo)系中,y軸是邊長為2的等邊△BAD的對(duì)稱軸,x軸是等腰△BDC的對(duì)稱軸.
(1)試求出經(jīng)過點(diǎn)A、點(diǎn)B,且對(duì)稱軸為直線x=1的拋物線的解析式;
(2)把△BDC沿著直線BD翻折后,得到△BDC'.
①問點(diǎn)C'是否在(1)中的拋物線上?
②設(shè)BC'交直線x=1于點(diǎn)Q.若點(diǎn)P是(1)中的拋物線上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作PT⊥直線x=1,垂足為T,問:在拋物線上是否存在著點(diǎn)P,使得以P、T、Q為頂點(diǎn)的三角形與△QDC'相似?若存在,寫出所有符合上述條件的點(diǎn)P的橫坐標(biāo);若不存在,試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

O是邊長為a的正多邊形的中心,將一塊半徑足夠長,圓心角為α的扇形紙板的圓心放在O點(diǎn)處,并將紙板繞O點(diǎn)旋轉(zhuǎn).
(1)若正多邊形為正三角形,扇形的圓心角α=120°,請你通過觀察或測量,填空:
①如圖1,正三角形ABC的邊被扇形紙板覆蓋部分的總長度為________;
②如圖2,正三角形ABC的邊被扇形紙板覆蓋部分的總長度為________;
(2)若正多邊形為正方形,扇形的圓心角α=90°時(shí),①如圖3,正方形ABCD的邊被扇形紙板覆蓋部分的總長度為________;
②如圖4,正方形ABCD的邊被扇形紙板覆蓋部分的總長度為多少?并給予證明;
(3)若正多邊形為正五邊形,如圖5,當(dāng)扇形紙板的圓心角α為________時(shí),正五邊形的邊被扇形紙板覆蓋部分的總長度仍為定值a.
(4)一般地,將一塊半徑足夠長的扇形紙板的圓心放在邊長為a的正n邊形的中心O點(diǎn)處,并將紙板繞O點(diǎn)旋轉(zhuǎn).當(dāng)扇形紙板的圓心角為________時(shí),正n邊形的邊被扇形紙板覆蓋部分的總長度為定值a.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖①,在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),邊長為的正三角形邊在軸的正半軸上.點(diǎn)同時(shí)從點(diǎn)出發(fā),點(diǎn)以1單位長/秒的速度向點(diǎn)運(yùn)動(dòng),點(diǎn)為2個(gè)單位長/秒的速度沿折線運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為秒,

(1)當(dāng)時(shí),證明

(2)若的面積為,求的函數(shù)關(guān)系式;

(3)以點(diǎn)為中心,將所在的直線順時(shí)針旋轉(zhuǎn)60°交邊于點(diǎn),若以、、為頂點(diǎn)的四邊形是梯形,求點(diǎn)的坐標(biāo).

 


查看答案和解析>>

同步練習(xí)冊答案