【題目】問題背景:如圖1,在正方形ABCD的內部,作∠DAE=∠ABF=∠BCG=∠CDH,根據(jù)三角形全等的條件,易得△DAE≌△ABF≌△BCG≌△CDH,從而得四邊形EFGH是正方形.
類比探究:如圖2,在正△ABC的內部,作∠1=∠2=∠3,AD,BE,CF兩兩相交于D,E,F三點(D,E,F三點不重合).
(1)△ABD,△BCE,△CAF是否全等?如果是,請選擇其中一對進行證明;
(2)△DEF是否為正三角形?請說明理由;
(3)如圖3,進一步探究發(fā)現(xiàn),△ABD的三邊存在一定的等量關系,設BD=a,AD=b,AB=c,請?zhí)剿?/span>a,b,c滿足的等量關系.
【答案】(1)△ABD≌△BCE≌△CAF,證明詳見解析;(2)△DEF是正三角形,理由詳見解析;(3)c2=a2+ab+b2.
【解析】
(1)由正三角形的性質得出∠CAB=∠ABC=∠BCA=60°,AB=BC,證出∠ABD=∠BCE,由ASA證明△ABD≌△BCE即可;
(2)由全等三角形的性質得出∠ADB=∠BEC=∠CFA,證出∠FDE=∠DEF=∠EFD,即可得出結論;
(3)作AG⊥BD于G,由正三角形的性質得出∠ADG=60°,在Rt△ADG中,DG=b,AG=b,在Rt△ABG中,由勾股定理即可得出結論.
(1)△ABD≌△BCE≌△CAF;理由如下:
∵△ABC是正三角形,
∴∠CAB=∠ABC=∠BCA=60°,AB=BC=AC,
又∵∠1=∠2=∠3,
∴∠ABD=∠BCE=∠CAF,
在△ABD、△BCE和△CAF中,
,
∴△ABD≌△BCE≌△CAF(ASA);
(2)△DEF是正三角形;理由如下:
∵△ABD≌△BCE≌△CAF,
∴∠ADB=∠BEC=∠CFA,
∴∠FDE=∠DEF=∠EFD,
∴△DEF是正三角形;
(3)c2=a2+ab+b2.理由如下:
如圖所示,作AG⊥BD于G,
∵△DEF是正三角形,
∴∠ADG=60°,
在Rt△ADG中,∠AGD=90°,∠ADG=60°,
∴∠DAG=30°,
∴DG=AD=b,
∴AG==b,
∴BG=BD+DG=a+b,
在Rt△ABG中,∠AGB=90°,
∴AB2=BG2+AG2,
即c2=(a+b)2+(b)2,
∴c2=a2+ab+b2.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,點O為坐標原點,正方形OABC的邊OA,OC分別在x軸,y軸上,點B的坐標為(4,4),反比例函數(shù)的圖象經(jīng)過線段BC的中點D,交正方形OABC的另一邊AB于點E.
(1)求k的值;
(2)如圖①,若點P是x軸上的動點,連接PE,PD,DE,當△DEP的周長最短時,求點P的坐標;
(3)如圖②,若點Q(x,y)在該反比例函數(shù)圖象上運動(不與D重合),過點Q作QM⊥y軸,垂足為M,作QN⊥BC所在直線,垂足為N,記四邊形CMQN的面積為S,求S關于x的函數(shù)關系式,并寫出x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形紙片ABCD中,AB=4,AD=6,點P是邊BC上的動點,現(xiàn)將紙片折疊,使點A與點P重合,折痕與矩形邊的交點分別為E、F,要使折痕始終與邊AB、AD有交點,則BP的取值范圍是_________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD的∠BAD=∠C=90°,AB=AD,AE⊥BC于E,△ABE繞著點A旋轉后能與△ADF重合,若AF=5cm,則四邊形ABCD的面積為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于的一元二次方程.
(1)若此方程的一個根為1,求的值;
(2)求證:不論取何實數(shù),此方程都有兩個不相等的實數(shù)根.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,對稱軸為x=1,經(jīng)過點(-1,0),有下列結論:①abc<0;②a+c>b;③3a+c=0;④a+b>m(am+b)(其中m≠1)其中正確的結論有( )
A. 1個
B. 2個
C. 3個
D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】觀察下列等式: ;;;……
根據(jù)上面等式反映的規(guī)律,解答下列問題:
(1)請根據(jù)上述等式的特征,在括號內填上同一個實數(shù): ( )-5=( );
(2)小明將上述等式的特征用字母表示為:(、為任意實數(shù)).
①小明和同學討論后發(fā)現(xiàn):、的取值范圍不能是任意實數(shù).請你直接寫出、不能取哪些實數(shù).
②是否存在、兩個實數(shù)都是整數(shù)的情況?若存在,請求出、的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,邊長為1的正方形ABCD頂點A(0,1),B(1,1);一拋物線y=ax2+bx+c過點M(﹣1,0)且頂點在正方形ABCD內部(包括在正方形的邊上),則a的取值范圍是( 。
A. ﹣2≤a≤﹣1 B. ﹣2≤a≤﹣ C. ﹣1≤a≤﹣ D. ﹣1≤a≤﹣
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知四邊形ABCD是矩形,延長AB至點F,連結CF,使得CF=AF,過點A作AE⊥FC于點E.
(1)求證:AD=AE.
(2)連結CA,若∠DCA=70°,求∠CAE的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com