【題目】反比例函數(shù)y= 與一次函數(shù)y=kx﹣k+2在同一直角坐標(biāo)系中的圖象可能是(
A.
B.
C.
D.

【答案】D
【解析】解:A、如圖所示,反比例函數(shù)圖象經(jīng)過(guò)第一、三象限,則k>0,所以一次函數(shù)圖象必定經(jīng)過(guò)第一、三象限,與圖示不符,故本選項(xiàng)錯(cuò)誤; B、如圖所示,反比例函數(shù)圖象經(jīng)過(guò)第二、四象限,則k<0.﹣k+2>0,所以一次函數(shù)圖象經(jīng)過(guò)第一、二、四象限,與圖示不符,故本選項(xiàng)錯(cuò)誤;
C、如圖所示,反比例函數(shù)圖象經(jīng)過(guò)第二、四象限,則k<0.﹣k+2>0,所以一次函數(shù)圖象經(jīng)過(guò)第一、二、四象限,與圖示不符,故本選項(xiàng)錯(cuò)誤;
D、如圖所示,反比例函數(shù)圖象經(jīng)過(guò)第一、三象限,則k>0,所以一次函數(shù)圖象必定經(jīng)過(guò)第一、三象限,與圖示一致,故本選項(xiàng)正確;
故選:D.
【考點(diǎn)精析】本題主要考查了一次函數(shù)的圖象和性質(zhì)和反比例函數(shù)的圖象的相關(guān)知識(shí)點(diǎn),需要掌握一次函數(shù)是直線,圖像經(jīng)過(guò)仨象限;正比例函數(shù)更簡(jiǎn)單,經(jīng)過(guò)原點(diǎn)一直線;兩個(gè)系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來(lái)相見(jiàn),k為正來(lái)右上斜,x增減y增減;k為負(fù)來(lái)左下展,變化規(guī)律正相反;k的絕對(duì)值越大,線離橫軸就越遠(yuǎn);反比例函數(shù)的圖像屬于雙曲線.反比例函數(shù)的圖象既是軸對(duì)稱圖形又是中心對(duì)稱圖形.有兩條對(duì)稱軸:直線y=x和 y=-x.對(duì)稱中心是:原點(diǎn)才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將周長(zhǎng)為8的△ABC沿BC方向向右平移1個(gè)單位得到△DEF,則四邊形ABFD的周長(zhǎng)為(
A.11
B.10
C.9
D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙二人從同一地點(diǎn)出發(fā),同向而行,甲乘車(chē),乙步行.如果乙先走20 km,那么甲用1 h就能追上乙;如果乙先走1 h,那么甲只用15 min就能追上乙.求甲、乙二人的速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“半角型”問(wèn)題探究:如圖1,在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,且∠EAF=60°,探究圖中線段BEEF,FD之間的數(shù)量關(guān)系.小明同學(xué)的方法是將△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)120°到△ADG的位置,然后再證明△AFE≌△AFG,從而得出結(jié)論:EF=BE+DF

(1)如圖2,在四邊形ABCD中,AB=AD,∠B +∠D=180°,E,F分別是邊BCCD上的點(diǎn),且∠EAF=BAD,上述結(jié)論是否仍然成立,并說(shuō)明理由.

(2)實(shí)際應(yīng)用:

如圖3,在某次軍事演習(xí)中,艦艇甲在指揮中心(O處)北偏西30°的A處,艦艇乙在指揮中心南偏東70°的B處,并且兩艦艇到指揮中心的距離相等,接到行動(dòng)指令后,艦艇甲向正東方向以60海里/小時(shí)的速度前進(jìn),艦艇乙沿北偏東50°的方向以80海里/小時(shí)的速度前進(jìn)1.5小時(shí)后,指揮中心觀測(cè)到甲、乙兩艦艇分別到達(dá)E,F(xiàn)處,且兩艦艇之間的夾角為70°,試求此時(shí)兩艦艇之間的距離?

拓展提高

(3)如圖4,邊長(zhǎng)為5的正方形ABCD中,點(diǎn)E、F分別在ABCD上,AE=CF=1,OEF的中點(diǎn),動(dòng)點(diǎn)G、H分別在邊ADBC上,EFGH的交點(diǎn)POF之間(與0、F不重合),且∠GPE=45°,設(shè)AG=m,求m的取值范圍。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)學(xué)興趣小組測(cè)量校園內(nèi)旗桿的高度,有以下兩種方案:

方案一:小明在地面上直立一根標(biāo)桿,沿著直線后退到點(diǎn),使眼睛、標(biāo)桿的頂點(diǎn)、旗桿的頂點(diǎn)在同一直線上(如圖1).測(cè)量:人與標(biāo)桿的距離=1 m,人與旗桿的距離=16m,人的目高和標(biāo)桿的高度差=0.9m,人的高度=1.6m.

方案二:小聰在某一時(shí)刻測(cè)得1米長(zhǎng)的竹竿豎直放置時(shí)影長(zhǎng)1.5米,在同時(shí)刻測(cè)量旗桿的影長(zhǎng)時(shí),因旗桿靠近一樓房,影子不全落在地面上,有一部分落在墻上,他測(cè)得落在地面上影長(zhǎng)為21米,留在墻上的影高為2(如圖2).

請(qǐng)你結(jié)合上述兩個(gè)方案,選擇其中的一個(gè)方案求旗桿的高度。我選擇方案 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算題

(1)﹣10﹣(﹣16)+(﹣24);

(2)﹣3.5÷×(﹣)×|﹣|

(3)(+)×(﹣36)

(4)(﹣1)3+[42﹣(l﹣32)×2]

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)AC的坐標(biāo)分別為(6,0)、(0,4),點(diǎn)P是線段BC上的動(dòng)點(diǎn),當(dāng)OPA是等腰三角形時(shí),則P點(diǎn)的坐標(biāo)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知 A=2 x2+3xy﹣2x﹣1,B= x2﹣xy﹣1.

(1)化簡(jiǎn):4A﹣(2B+3A),將結(jié)果用含有 x、y 的式子表示;

(2)若式子 4A﹣(2B+3A)的值與字母 x 的取值無(wú)關(guān), y3+A﹣ B 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將一條數(shù)軸在原點(diǎn)O和點(diǎn)B處各折一下,得到一條折線數(shù)軸.圖中點(diǎn)A表示﹣11,點(diǎn)B表示10,點(diǎn)C表示18,我們稱點(diǎn)A和點(diǎn)C在數(shù)軸上相距29個(gè)長(zhǎng)度單位.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以2單位/秒的速度沿著折線數(shù)軸的正方向運(yùn)動(dòng),從點(diǎn)O運(yùn)動(dòng)到點(diǎn)B期間速度變?yōu)樵瓉?lái)的一半,之后立刻恢復(fù)原速;同時(shí),動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),以1單位/秒的速度沿著數(shù)軸的負(fù)方向運(yùn)動(dòng),從點(diǎn)B運(yùn)動(dòng)到點(diǎn)O期間速度變?yōu)樵瓉?lái)的兩倍,之后也立刻恢復(fù)原速.設(shè)運(yùn)動(dòng)的時(shí)間為t秒.

問(wèn):(1)動(dòng)點(diǎn)P從點(diǎn)A運(yùn)動(dòng)至C點(diǎn)需要多少時(shí)間?

(2)P、Q兩點(diǎn)相遇時(shí),求出相遇點(diǎn)M所對(duì)應(yīng)的數(shù)是多少;

(3)求當(dāng)t為何值時(shí),P、O兩點(diǎn)在數(shù)軸上相距的長(zhǎng)度與Q、B兩點(diǎn)在數(shù)軸上相距的長(zhǎng)度相等.

查看答案和解析>>

同步練習(xí)冊(cè)答案