如圖①,AB是⊙O的直徑,AC是弦,直線EF和⊙O相切于點C,AD⊥EF,垂足為D.
(1)求證:∠DAC=∠BAC;
(2)若把直線EF向上平行移動,如圖②,EF交⊙O于G、C兩點,若題中的其它條件不變,這時與∠DAC相等的角是哪一個?為什么?

【答案】分析:(1)連接OC,根據(jù)切線的性質定理以及等角的余角相等即可證明;
(2)構造直徑所對的圓周角,根據(jù)等弧所對的圓周角相等以及等角的余角相等,發(fā)現(xiàn)∠BAC=∠GAD,再根據(jù)等式的性質即可證明∠BAG=∠DAC.
解答:(1)證明:連接OC;
∵EF切⊙O于點C,
∴OC⊥EF,
∴∠1+∠4=90°;
∵AD⊥EF,
∴∠3+∠4=90°;
又∵OA=OC,
∴∠1=∠2,
∴∠2=∠3,
即∠DAC=∠BAC.

(2)解:∠BAG=∠DAC,理由如下:
連接BC;
∵AB為⊙O的直徑,
∴∠BCA=90°,∠B+∠BAC=90°,
∵∠AGD+∠GAD=90°,
又∵∠B=∠AGD,
∴∠BAC=∠GAD;
即∠BAG+∠GAC=∠GAC+∠DAC,
∴∠BAG=∠DAC.
點評:此題運用了切線的性質定理、圓周角定理的推論.注意根據(jù)等角的余角相等是證明角相等的一種常用方法.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

34、關于圖形變化的探討:
(1)①例題1.如圖1,AB是⊙O的直徑,直線l與⊙O有一個公共點C,過A、B分別作l的垂線,垂足為E、F,則EC=CF.
②上題中,當直線l向上平行移動時,與⊙O有了兩個交點C1、C2,其它條件不變,如圖2,經過推證,我們會得到與原題相應的結論:EC1=C2F.
③把直線1繼續(xù)向上平行移動,使弦C1C2與AB交于點P(P不與A,B重合).在其它條件不變的情況下,請你在圖3的圓中將變化后的圖形畫出來,標好對應的字母,并寫出與①②相應的結論等式.判斷你寫的結論是否成立,若不成立,說明理由,若成立,給以證明.結論
EC1=C2F
.證明結論成立或說明不成立的理由
(2)①例題2.如圖4,BC是⊙O的直徑.直線1是過C點的切線.N是⊙O上一點,直線BN交1于點M.過N點的切線交1于點P,則PM2=PC2
②把例題2中的直線1向上平行移動,使之與⊙O相交,且與直線BN交于B、N兩點之間.其它條件仍然不變,請你利用圖5的圓把變化后的圖形畫出來,標好相應的字母,并寫出與①相應的結論等積式,判斷你寫的結論是否成立,若不成立,說明理由,若成立,給以證明.結論
PM2=PC1•PC2
.證明結論成立或說明不成立的理由:
(3)總結:請你通過(1)、(2)的事實,用簡練的語言,總結出某些幾何圖形的一個變化規(guī)律
在某些幾何圖形中,平行移動某條直線,有些幾何關系保持不變.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1,AB是⊙O的直徑,直線l交⊙O于C1、C2,AD⊥l,垂足為D.
(1)求證:AC1•AC2=AB•AD.
(2)若將直線l向上平移(如圖2),交⊙O于C1、C2,使弦C1C2與直徑AB相交(交點不與A、B重合),其他條件不變,請你猜想,AC1、AC2、AB、AD之間的關系,并說明理由.
(3)若將直線l平移到與⊙O相切時,切點為C,其他條件不變,請你在圖3上畫出變化后的圖形,標好相應的字母并猜想AC、AB、AD的關系是什么?(只寫出關系,不加以說明)精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,若AB是⊙0的直徑,CD是⊙O的弦,∠C=30°,BD=1,則⊙O的半徑是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•海滄區(qū)一模)如圖,若AB是⊙O的直徑,CD是⊙O的弦,∠ABD=50°,則∠BCD=
40°
40°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,弦AB是⊙O的內接正方形的一條邊,則弦AB所對的圓周角的度數(shù)為
45°或135°
45°或135°

查看答案和解析>>

同步練習冊答案