【題目】矩形具有而菱形不具有的性質(zhì)是 ( )

A. 對邊相等 B. 對角線互相平分 C. 對角線互相垂直 D. 對角線相等

【答案】D

【解析】分析:矩形相對于平行四邊形的一個特性為:對角線相等.菱形相對于平行四邊形的一個特性為:對角線互相垂直.

詳解:矩形相對于平行四邊形的一個特性為:對角線相等.菱形相對于平行四邊形的一個特性為:對角線互相垂直.

矩形具有而菱形不具有的性質(zhì)是:對角線相等.

故選D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某旅行社擬在暑假期間面向?qū)W生推出“林州紅旗渠一日游”活動,收費標準如下:

人數(shù)m

0<m≤100

100<m≤200

m>200

收費標準(元/人)

90

85

75

甲、乙兩所學(xué)校計劃組織本校學(xué)生自愿參加此項活動.已知甲校報名參加的學(xué)生人數(shù)多于100人,乙校報名參加的學(xué)生人數(shù)少于100人.經(jīng)核算,若兩校分別組團共需花費20 800元,若兩校聯(lián)合組團只需花費18 000元.
(1)兩所學(xué)校報名參加旅游的學(xué)生人數(shù)之和超過200人嗎?為什么?
(2)兩所學(xué)校報名參加旅游的學(xué)生各有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,EF⊥AB于F,CD⊥AB于D,點G在AC邊上,且∠1=∠2=50°.

(1)求證:EF∥CD;
(2)若∠AGD=65°,試求∠DCG的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算
(1)
(2)
(3)
(4)x﹣y+

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,G,E分別是正方形ABCD的邊AB,BC的點,且AG=CE,AE⊥EF,AE=EF,現(xiàn)有如下結(jié)論:①BE=GE;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH

其中,正確的結(jié)論有(

A.1個 B.2個 C.3個 D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,船A、B在東西方向的海岸線MN上,均收到已觸礁擱淺的船P的求救信號,已知船P在船A的北偏東60°方向上,在船B的北偏西37°方向上,AP=30海里.

(1)尺規(guī)作圖:過點P作AB所在直線的垂線,垂足為E(要求:保留作圖痕跡,不寫作法);

(2)求船P到海岸線MN的距離(即PE的長);

(3)若船A、船B分別以20海里/時、15海里/時的速度同時出發(fā),勻速直線前往救援,試通過計算判斷哪艘船先到達船P處.(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知am=4,an=5,則am+n的值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在菱形ABCD中,∠A=60°,AB=4 ,點P在對角線AC上,且PB=PD=4,則∠PDC的度數(shù)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合題:解下列各式
(1)解方程組
(2)解不等式組: ,并把解集在數(shù)軸上表示出來.

查看答案和解析>>

同步練習(xí)冊答案