精英家教網 > 初中數學 > 題目詳情
如圖,王虎使一長為4cm,寬為3cm的長方形木板,在桌面上做無滑動的翻滾(順時針方向)木板上點A位置變化為A→A1→A2,其中第二次翻滾被桌面上一小木塊擋住,使木板與桌面成30°角,則點A翻滾到A2位置時共走過的路徑長為( )

A.10cm
B.4πcm
C.
D.
【答案】分析:根據旋轉的定義得到點A以B為旋轉中心,以∠BAA1為旋轉角,順時針旋轉得到A1;A2是由A1以C為旋轉中心,以∠A1CA2為旋轉角,順時針旋轉得到,由于∠ABA1=90°,∠A1CA2=60°,AB==5cm,CA1=3cm,然后根據弧長公式計算即可.
解答:解:點A以B為旋轉中心,以∠BAA1為旋轉角,順時針旋轉得到A1;A2是由A1以C為旋轉中心,以∠A1CA2為旋轉角,順時針旋轉得到,

∵∠ABA1=90°,∠A1CA2=60°,AB==5cm,CA1=3cm,
∴點A翻滾到A2位置時共走過的路徑長=+=π(cm).
故選C.
點評:本題考查了弧長公式:l=(n為圓心角,R為半徑);也考查了旋轉的性質.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖,王虎使一長為4cm,寬為3cm的長方形木板,在桌面上做無滑動的翻滾(順時針方向)木板上點A位置變化為A→A1→A2,其中第二次翻滾被桌面上一小木塊擋住,使木板與桌面成30°角,則點A翻滾到A2位置時共走過的路徑長為( 。
精英家教網
A、10cm
B、4πcm
C、
7
2
πcm
D、
5
2
cm

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,王虎使一長為4cm,寬為3cm的長方形木板,在桌面上做無滑動的翻滾(順時針方向)木板上點A位置變化為A到A1到A2,其中第二次翻滾被桌面上一小木塊擋住,使木板與桌面精英家教網成30°角,則點A翻滾到A2時共走過的路徑長為
 
cm.(結果保留π).

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,王虎使一長為4cm,寬為3cm的長方形木板,在桌面上做無滑動的翻滾(順時針方向)木板上點A位置變化為A→A1→A2,其中第二次翻滾被桌面上一小木塊擋住,使木板與桌面成30°角,則點A翻滾到A2位置時共走過的路徑長為多少?
精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,王虎使一長為4cm,寬為3cm的長方形木板,在桌面上做無滑動的翻滾(順時針方向)木板上點A位置變化為A→A1→A2,其中第二次翻滾被桌面上一小木塊擋住,使木板與桌面成30°角,則點A翻滾到A2位置時共走過的路徑長為多少?

查看答案和解析>>

科目:初中數學 來源:2009年湖北省黃石市十四中中考數學模擬試卷(解析版) 題型:填空題

(2006•深圳模擬)如圖,王虎使一長為4cm,寬為3cm的長方形木板,在桌面上做無滑動的翻滾(順時針方向)木板上點A位置變化為A到A1到A2,其中第二次翻滾被桌面上一小木塊擋住,使木板與桌面成30°角,則點A翻滾到A2時共走過的路徑長為    cm.(結果保留π).

查看答案和解析>>

同步練習冊答案