問題:如圖(1),一圓柱的底面半徑為5分米,高AB為5分米,BC是底面直徑,求一只螞蟻從A點出發(fā)沿圓柱表面爬行到點C的最短路線.小明設(shè)計了兩條路線:
路線1:側(cè)面展開圖中的線段AC.如圖(2)所示:設(shè)路線1的長度為l1,則l12=AC2=AB2+BC2=52+(5π)2=25+25π2
路線2:高線AB+底面直徑BC.如圖(1)所示:設(shè)路線2的長度為l2,則l22=(AB+BC)2=(5+10)2=225,∵l12-l22>0,
∴l(xiāng)12>l22,∴l(xiāng)1>l2,所以要選擇路線2較短.

(1)小明對上述結(jié)論有些疑惑,于是他把條件改成:“圓柱的底面半徑為1分米,高AB為5分米”繼續(xù)按前面的路線進(jìn)行計算.請你幫小明完成下面的計算:
路線1:l12=AC2=______;
路線2:l22=(AB+BC)2=______.∴l(xiāng)1______l2 ( 填>或<),所以應(yīng)選擇路線______(填1或2)較短.
(2)請你幫小明繼續(xù)研究:在一般情況下,當(dāng)圓柱的底面半徑為r,高為h時,應(yīng)如何選擇上面的兩條路線才能使螞蟻從點A出發(fā)沿圓柱表面爬行到C點的路線最短.
【答案】分析:(1)根據(jù)勾股定理易得路線1:l12=AC2=高2+底面周長一半2;路線2:l22=(高+底面直徑)2;讓兩個平方比較,平方大的,底數(shù)就大.
(2)根據(jù)(1)得到的結(jié)論讓兩個代數(shù)式分三種情況進(jìn)行比較即可.
解答:解:(1)路線1:l12=AC2=25+π2
路線2:l22=(AB+BC)2=49.
∵l12<l22,
∴l(xiāng)1<l2
∴選擇路線1較短
(2)l12=AC2=AB2+2=h2+(πr)2,
l22=(AB+BC)2=(h+2r)2,
l12-l22=h2+(πr)2-(h+2r)2=r(π2r-4r-4h)=r[(π2-4)r-4h];
r恒大于0,只需看后面的式子即可.
當(dāng)時,l12=l22;
當(dāng)r>時,l12>l22
當(dāng)r<時,l12<l22
根據(jù)r的取值,則可知當(dāng)r>時,選擇l2,當(dāng)r<時,選擇l1,當(dāng)r=時,選擇l1與l2
故答案為:25+π2;49,<,1.
點評:此題考查了平面展開-最短路徑問題,比較兩個數(shù)的大小,有時比較兩個數(shù)的平方比較簡便,比較兩個數(shù)的平方,通常讓這兩個數(shù)的平方相減.注意運用類比的方法做類型題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

請閱讀下列材料:
問題:如圖(1),一圓柱的底面半徑、高均為5cm,BC是底面直徑,求一只螞蟻從A點出發(fā)沿圓柱表面爬行到點C的最短路線.小明設(shè)計了兩條路線:
路線1:側(cè)面展開圖中的線段AC.如下圖(2)所示:
設(shè)路線1的長度為l1,則l12=AC2=AB2+
BC
2=52+(5π)2=25+25π2
路線2:高線AB+底面直徑BC.如上圖(1)所示:
設(shè)路線2的長度為l2,則l22=(AB+BC)2=(5+10)2=225
精英家教網(wǎng)
精英家教網(wǎng)

l12-l22=25+25π2-225=25π2-200=25(π2-8)>0
∴l(xiāng)12>l22,∴l(xiāng)1>l2
所以要選擇路線2較短.
(1)小明對上述結(jié)論有些疑惑,于是他把條件改成:“圓柱的底面半徑為1cm,高AB為5cm”繼續(xù)按前面的路線進(jìn)行計算.請你幫小明完成下面的計算:
路線1:l12=AC2=
 
;
路線2:l22=(AB+BC)2=
 

∵l12
 
l22,
∴l(xiāng)1
 
l2(填>或<)
∴選擇路線
 
(填1或2)較短.
(2)請你幫小明繼續(xù)研究:在一般情況下,當(dāng)圓柱的底面半徑為r,高為h時,應(yīng)如何選擇上面的兩條路線才能使螞蟻從點A出發(fā)沿圓柱表面爬行到C點的路線最短.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)矩形折疊問題:如圖所示,把一張矩形紙片沿對角線折疊,重合部分是什么圖形,試說明理由.
(1)若AB=4,BC=8,求AF.
(2)若對折使C在AD上,AB=6,BC=10,求AE,DF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

請閱讀下列材料:
問題:如圖(2),一圓柱的高AB=5dm,底面半徑為5dm,BC是底面直徑,求一只螞蟻從A點出發(fā)沿圓柱表面爬行到點C的最短路線.小明設(shè)計了兩條路線:
路線1:沿側(cè)面展開圖中的線段AC.如下圖(2)所示:
精英家教網(wǎng)
設(shè)路線1的長度為l1,則l12=AC2=AB2+BC2=52+(5π)2=25+25π2
路線2:高線AB+底面直徑BC.如上圖(1)所示:
設(shè)路線2的長度為l2,則l22=(AB+BC)2=(5+10)2=225
∵l12-l22=25+25π2-225=25π2-200=25(π2-8)>0
∴l(xiāng)12>l22,∴l(xiāng)1>l2
所以要選擇路線2較短.
(1)小明對上述結(jié)論有些疑惑,于是他把條件改成:“圓柱的底面半徑為1dm,高AB仍為5dm”繼續(xù)按前面的路線進(jìn)行計算.請你幫小明完成下面的計算:
路線1:l12=AC2=AB2+BC2=
 

路線2:l22=(AB+BC)2=
 

∵l12
 
l22,∴l(xiāng)1
 
l2( 填>或<)
所以應(yīng)選擇路線
 
(填1或2)較短.
(2)請你幫小明繼續(xù)研究:設(shè)圓柱的底面半徑為r,高為h,當(dāng)螞蟻走上述兩條路線的路程出現(xiàn)相等情況時,求出此時h與r的比值(本小題π的值取3).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

問題:如圖(1),一圓柱的底面半徑為5分米,高AB為5分米,BC是底面直徑,求一只螞蟻從A點出發(fā)沿圓柱表面爬行到點C的最短路線.小明設(shè)計了兩條路線:
路線1:側(cè)面展開圖中的線段AC.如圖(2)所示:設(shè)路線1的長度為l1,則l12=AC2=AB2+BC2=52+(5π)2=25+25π2
路線2:高線AB+底面直徑BC.如圖(1)所示:設(shè)路線2的長度為l2,則l22=(AB+BC)2=(5+10)2=225,∵l12-l22>0,
∴l(xiāng)12>l22,∴l(xiāng)1>l2,所以要選擇路線2較短.

(1)小明對上述結(jié)論有些疑惑,于是他把條件改成:“圓柱的底面半徑為1分米,高AB為5分米”繼續(xù)按前面的路線進(jìn)行計算.請你幫小明完成下面的計算:
路線1:l12=AC2=
25+π2
25+π2
;
路線2:l22=(AB+BC)2=
49
49
.∴l(xiāng)1
l2 ( 填>或<),所以應(yīng)選擇路線
1
1
(填1或2)較短.
(2)請你幫小明繼續(xù)研究:在一般情況下,當(dāng)圓柱的底面半徑為r,高為h時,應(yīng)如何選擇上面的兩條路線才能使螞蟻從點A出發(fā)沿圓柱表面爬行到C點的路線最短.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

問題:如圖(1),一圓柱的底面半徑為5分米,高AB為5分米,BC是底面直徑,求一只螞蟻從A點出發(fā)沿圓柱表面爬行到點C的最短路線.小明設(shè)計了兩條路線:
路線1:側(cè)面展開圖中的線段AC.如圖(2)所示:設(shè)路線1的長度為l1,則l12=AC2=AB2+BC2=52+(5π)2=25+25π2
路線2:高線AB+底面直徑BC.如圖(1)所示:設(shè)路線2的長度為l2,則l22=(AB+BC)2=(5+10)2=225,∵l12-l22>0,
∴l(xiāng)12>l22,∴l(xiāng)1>l2,所以要選擇路線2較短.

(1)小明對上述結(jié)論有些疑惑,于是他把條件改成:“圓柱的底面半徑為1分米,高AB為5分米”繼續(xù)按前面的路線進(jìn)行計算.請你幫小明完成下面的計算:
路線1:l12=AC2=______;
路線2:l22=(AB+BC)2=______.∴l(xiāng)1______l2 ( 填>或<),所以應(yīng)選擇路線______(填1或2)較短.
(2)請你幫小明繼續(xù)研究:在一般情況下,當(dāng)圓柱的底面半徑為r,高為h時,應(yīng)如何選擇上面的兩條路線才能使螞蟻從點A出發(fā)沿圓柱表面爬行到C點的路線最短.

查看答案和解析>>

同步練習(xí)冊答案