【題目】如圖,在△ABC中,AB=AC,點D、E、F分別在BC、AB、AC邊上,且BE=CF,BD=CE.
(1)求證:△DEF是等腰三角形;
(2)求證:∠B=∠DEF;
(3)當∠A=40°時,求∠DEF的度數.
【答案】
(1)證明:∵AB=AC,
∴∠B=∠C,
在△DBE和△ECF中, ,
∴△DBE≌△ECF,
∴DE=FE,
∴△DEF是等腰三角形
(2)證明:∵△BDE≌△CEF,
∴∠FEC=∠BDE,
∴∠DEF=180°﹣∠BED﹣∠EFC=180°﹣∠DEB﹣∠EDB=∠B
(3)證明:∵由(2)知△BDE≌△CEF,
∴∠BDE=∠CEF,
∴∠CEF+∠DEF=∠BDE+∠B,
∴∠DEF=∠B,
∴AB=AC,∠A=40°,
∴∠DEF=∠B= =70°
【解析】(1)首先根據條件證明△DBE≌△ECF,根據全等三角形的性質可得DE=FE,進而可得到△DEF是等腰三角形;(2)根據△BDE≌△CEF,可知∠FEC=∠BDE,∠DEF=180°﹣∠BED﹣∠EFC=180°﹣∠DEB﹣∠EDB=∠B即可得出結論;(3)由(2)知∠DEF=∠B,再根據等腰三角形的性質即可得出∠DEF的度數.
科目:初中數學 來源: 題型:
【題目】下列事件中確定事件是( )
A.擲一枚均勻的硬幣,正面朝上
B.買一注福利彩票一定會中獎
C.把4個球放入三個抽屜中,其中一個抽屜中至少有2個球
D.擲一枚六個面分別標有,1,2,3,4,5,6的均勻正方體骰子,骰子停止轉動后奇數點朝上
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,高鐵列車座位后面的小桌板收起時可以近似地看作與地面垂直,展開小桌板后,桌面會保持水平.如圖的實線是小桌板展開后的示意圖,其中OB表示小桌面的寬度,BC表示小桌板的支架.連接OA,此時OA=75厘米,∠AOB=∠ACB=37°,且支架長BC與桌面寬OB的長度之和等于OA的長度,求點B到AC的距離.(參考數據: , , )
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】根據下列要求畫圖.
(1)如圖(1)所示,過點A畫MN∥BC;
(2)如圖(2)所示,過點P畫PE∥OA,交OB于點E,過點P畫PH∥OB,交OA于點H;
(3)如圖(3)所示,過點C畫CE∥DA,與AB交于點E,過點C畫CF∥DB,與AB的延長線交于點F.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】從氣象臺獲悉“本市明天降水概率是80%”,對此信息,下面幾種說法正確的是( )
A. 本市明天將有80%的地區(qū)降水 B. 本市明天將有80%的時間降水
C. 明天肯定下雨 D. 明天降水的可能性大
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一個不透明的口袋中裝有4個完全相同的小球,分別標有數字1,2,3,4,另外有一個可以自由旋轉的圓盤,被分成面積相等的3個扇形區(qū)域,分別標有數字1,2,3(如圖所示).
(1)從口袋中摸出一個小球,所摸球上的數字大于2的概率為 ;
(2)小龍和小東想通過游戲來決定誰代表學校參加歌詠比賽,游戲規(guī)則為:一人從口袋中摸出一個小球,另一人轉動圓盤,如果所摸球上的數字與圓盤上轉出數字之和小于5,那么小龍去;否則小東去.你認為游戲公平嗎?請用樹狀圖或列表法說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我們對平面直角坐標系 中的三角形給出新的定義:三角形的“橫長”和三角形的“縱長”.我們假設點 , 是三角形邊上的任意兩點.如果 的最大值為 ,那么三角形的“橫長” ;如果 的最大值為 ,那么三角形的“縱長” .如右圖,該三角形的“橫長” ;“縱長” .
當 時,我們管這樣的三角形叫做“方三角形”.
(1)如圖1所示,
已知點 , .
在點 , , 中,可以和點 ,點 構成“方三角形”的點是;
(2)若點 在函數 上,且 為“方三角形”,求點 的坐標;
(3)如圖2所示,已知點 , ,點 為平面直角坐標系中任意一點.若 為“方三角形”,且 ,請直接寫出點 的坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com