【題目】在直角△ABC中,∠C=90°,∠A、∠B與∠C的對(duì)邊分別是a、b和c,那么下列關(guān)系中,正確的是(
A.cosA=
B.tanA=
C.sinA=
D.cosA=

【答案】C
【解析】解:在直角△ABC中,∠C=90°,則 A、cosA= ,故本選項(xiàng)錯(cuò)誤;
B、tanA= ,故本選項(xiàng)錯(cuò)誤;
C、sinA= ,故本選項(xiàng)正確;
D、cosA= ,故本選項(xiàng)錯(cuò)誤;
故選:C.

根據(jù)三角函數(shù)定義:(1)正弦:我們把銳角A的對(duì)邊a與斜邊c的比叫做∠A的正弦,記作sinA.(2)余弦:銳角A的鄰邊b與斜邊c的比叫做∠A的余弦,記作cosA.(3)正切:銳角A的對(duì)邊a與鄰邊b的比叫做∠A的正切,記作tanA.分別進(jìn)行分析即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),拋物線y=ax2﹣ax+6與x軸負(fù)半軸交于點(diǎn)A,與x軸的正半軸交于點(diǎn)B,且AB=7.

(1)如圖1,求a的值;
(2)如圖2,點(diǎn)P在第一象限內(nèi)拋物線上,過(guò)P作PH∥AB,交y軸于點(diǎn)H,連接AP,交OH于點(diǎn)F,設(shè)HF=d,點(diǎn)P的橫坐標(biāo)為t,求d與t之間的函數(shù)關(guān)系式,并直接寫出t的取值范圍;
(3)如圖3,在(2)的條件下,當(dāng)PH=2d時(shí),將射線AP沿著x軸翻折交拋物線于點(diǎn)M,在拋物線上是否存在點(diǎn)N,使∠AMN=45°,若存在,求出點(diǎn)N的坐標(biāo).若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,拋物線y=x2﹣2x+k與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C(0,﹣3).[圖2、圖3為解答備用圖]

(1)k= , 點(diǎn)A的坐標(biāo)為 , 點(diǎn)B的坐標(biāo)為;
(2)設(shè)拋物線y=x2﹣2x+k的頂點(diǎn)為M,求四邊形ABMC的面積;
(3)在x軸下方的拋物線上是否存在一點(diǎn)D,使四邊形ABDC的面積最大?若存在,請(qǐng)求出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(4)在拋物線y=x2﹣2x+k上求點(diǎn)Q,使△BCQ是以BC為直角邊的直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)D、E分別在△ABC的邊AB、AC上,下列給出的條件中,不能判定DE∥BC的是(
A.BD:AB=CE:AC
B.DE:BC=AB:AD
C.AB:AC=AD:AE
D.AD:DB=AE:EC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某人在C處看到遠(yuǎn)處有一涼亭B,在涼亭B正東方向有一棵大樹(shù)A,這時(shí)此人在C處測(cè)得B在北偏西45°方向上,測(cè)得A在北偏東35°方向上.又測(cè)得A、C之間的距離為100米,求A、B之間的距離.(精確到1米).(參考數(shù)據(jù):sin35°≈0.574,cos35°≈0.819,tan35°≈0.700)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=﹣2x2+bx+c的圖象經(jīng)過(guò)點(diǎn)A(0,4)和B(1,﹣2).
(1)求此函數(shù)的解析式;并運(yùn)用配方法,將此拋物線解析式化為y=a(x+m)2+k的形式;
(2)寫出該拋物線頂點(diǎn)C的坐標(biāo),并求出△CAO的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:( 1﹣20140﹣2sin30°+

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b的圖象與x軸、y軸分別相交于A(﹣3,0),B(0,﹣3)兩點(diǎn),二次函數(shù)y=x2+mx+n的圖象經(jīng)過(guò)點(diǎn)A.

(1)求一次函數(shù)y=kx+b的解析式;
(2)若二次函數(shù)y=x2+mx+n圖象的頂點(diǎn)在直線AB上,求m,n的值;
(3)當(dāng)﹣3≤x≤0時(shí),二次函數(shù)y=x2+mx+n的最小值為﹣4,求m,n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:(π﹣2017)0+6sin60°﹣|5﹣ |﹣( 2

查看答案和解析>>

同步練習(xí)冊(cè)答案