5.如圖,實數(shù)a、b在數(shù)軸上的位置,化簡$\sqrt{a^2}$-$\sqrt{b^2}$+$\sqrt{(a+b)^2}$.

分析 根據(jù)數(shù)軸上點的位置,可得a、b、a+b的值,根據(jù)二次根式的性質(zhì),可得答案.

解答 解:由數(shù)軸上點的位置,得
a<0,b>0,|a|<|b|,
a+b>0,%
$\sqrt{a^2}$-$\sqrt{b^2}$+$\sqrt{(a+b)^2}$=-a-b+a+b=0.

點評 本題考查了實數(shù)與數(shù)軸,利用數(shù)軸上點的位置得出a、b、a+b的值是解題關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

15.王志和孫尚到圖書城去買書,兩人在書城購買書共花費了206元,共購買了16本書,其中王志平均每本書的價格為12元,孫尚平均每本書的價格為14元.
(1)王志和孫尚各購買書多少本?
(2)如果在書城辦會卡買書可以享受7折優(yōu)惠,那么兩人合辦一張會員卡(會員卡8元),請問此次購書兩人共可以節(jié)省多少錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

16.如圖,在平面直角坐標(biāo)系中,△ABC的三個頂點坐標(biāo)分別為A(-2,-1),B(-1,1),C(0,-2).
(1)寫出點B關(guān)于坐標(biāo)原點O對稱的點B1的坐標(biāo);
(2)將△ABC繞點C順時針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后得到的△A1B1C;
(3)求過點B1的正比例函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

13.已知:xn,x′n是關(guān)于x的方程anx2-4anx+4an-n=0(an>an+1)的兩個實數(shù)根,xn<x′n,其中n為正整數(shù).且a1=1.
(1)x′1-x1的值為2
(2)當(dāng)n分別取1、2、…、2013時,相對應(yīng)的有2013個方程,將這些方程的所有實數(shù)根按照從小到大的順序排列.相鄰兩數(shù)的差恒為(x′1-x1)的值,則x′2013-x2012=6.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

20.化簡:
(1)(-$\frac{1}{3}$ab2c)2=$\frac{1}{9}$a2b4c2
(2)($\frac{2}{3}$)200×(-3)200=2200
(3)(3a23+(a22•a2=28a6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

10.如圖,用12米長的木條做一個有一條橫檔的矩形窗子,為使透進的光線最多,選擇窗子的高AB(木條粗細忽略不計)為(  )
A.1米B.2米C.3米D.4米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

17.在Rt△ABC中,∠C=90°,已知a和A,有下列結(jié)論:①c=asinA;②c=$\frac{a}{sinA}$;③c=acosA;④c=$\frac{a}{cosA}$.其中,正確的結(jié)論是②.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

14.有一邊長為4的等腰三角形,它的另兩邊長是方程x2-10x+k=0的兩根,求這個三角形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

6.如圖,在正方形ABCD中,對角線的長為2,動點P沿對角線BD從點B開始向點D運動,到達點D后停止運動.設(shè)BP=x,△PBC的面積為S,試確定S與x之間的函數(shù)表達式,并寫出x的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案