如圖,在平面直角坐標系中,四邊形OABC為菱形,點C的坐標為(4,0),∠AOC=60°,垂直于x軸的直線l從y軸出發(fā),沿x軸正方向以每秒1個單位長度的速度運動,設直線l與菱形OABC的兩邊分別交于點M、N(點M在點N的上方).
(1)求A、B兩點的坐標;
(2)設△OMN的面積為S,直線l運動時間為t秒(0≤t≤6),試求S與t的函數(shù)表達式;
(3)在題(2)的條件下,t為何值時,S的面積最大?最大面積是多少?
精英家教網(wǎng)
分析:(1)已知了菱形的邊長,過A作AD⊥OC于D,在直角三角形OAD中,可根據(jù)OA的長和∠AOC的度數(shù)求出OD和AD的長,即可得出A點坐標,將A的坐標向右平移4個單位即可得出B點坐標.
(2)當l過A點時,ON=OD=2,因此t=2;當l過C點時,ON=OC=4,此時t=4.因此本題可分三種情況:
①當0≤t≤2時,直線l與OA、OC兩邊相交,此時ON=t,MN=
3
t,根據(jù)三角形的面積公式即可得出S,t的函數(shù)關系式.
②當2<t≤4時,直線l與AB、OC兩邊相交,此時三角形OMN中,NM的長與AD的長相同,而ON=t,由此就不難得出S,t的函數(shù)關系式.
③當4<t≤6時,直線l與AB、BC兩邊相交,可設直線l與x軸交點為H,那么三角形OMN可以MN為底,OH為高來計算其面積.OH的長為t,而MN的長可通過MH-NH來求得,其中,MH可用OH和∠MOH的正切值求出,HN可用CH的長和∠BCH的正切值求出.據(jù)此可得出關于S,t的函數(shù)關系式.
(3)根據(jù)(2)中各函數(shù)的性質(zhì)和各自的自變量的取值范圍可得出S的最大值及對應的t的值.
解答:解:(1)∵四邊形OABC為菱形,點C的坐標為(4,0),
∴OA=AB=BC=CO=4.
過點A作AD⊥OC于D.
∵∠AOC=60°,
∴OD=2,AD=2
3

∴A(2,2
3
),B(6,2
3
).(3分)

(2)直線l從y軸出發(fā),沿x軸正方向運動與菱形OABC的兩邊相交有三種情況:
①0≤t≤2時,直線l與OA、OC兩邊相交,(如圖①).
精英家教網(wǎng)
∵MN⊥OC,
∴ON=t.
∴MN=ONtan60°=
3
t.
∴S=
1
2
ON•MN=
3
2
t2.(4分)
②當2<t≤4時,直線l與AB、OC兩邊相交,(如圖②).
精英家教網(wǎng)
S=
1
2
ON•MN=
1
2
×t×2
3
=
3
t.(6分)
③當4<t≤6時,直線l與AB、BC兩邊相交,(如圖③).
精英家教網(wǎng)
設直線l與x軸交于點H.
∵MN=2
3
-
3
(t-4)=6
3
-
3
t,
∴S=
1
2
OH•MN=
1
2
t(6
3
-
3
t)
=-
3
2
t2+3
3
t.

(3)由(2)知,當0≤t≤2時,S最大=
3
2
×22=2
3
,
當2<t≤4時,S最大=4
3

當4<t≤6時,配方得S=-
3
2
(t-3)2+
9
3
2
,
∴當t=3時,函數(shù)S=-
3
2
t2+3
3
t的最大值是
9
3
2

但t=3不在4<t≤6內(nèi),
∴在4<t≤6內(nèi),函數(shù)S=-
3
2
t2+3
3
t的最大值不是
9
3
2

而當t>3時,函數(shù)S=-
3
2
t2+3
3
t隨t的增大而減小,
∴當4<t≤6時,S<4
3

綜上所述,當t=4時,S最大=4
3
點評:本題為運動性問題,考查了菱形的性質(zhì)、圖形面積的求法、二次函數(shù)的應用等知識.
考查學生分類討論、數(shù)形結合的數(shù)學數(shù)形方法.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標;
(2)當∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標xoy中,以坐標原點O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(橫、縱坐標均為整數(shù))中任意選取一個點,其橫、縱坐標之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標中,等腰梯形ABCD的下底在x軸上,且B點坐標為(4,0),D點坐標為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標xOy中,已知點A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運動,路徑為O→A→B→C,到達點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當△OCP是等腰三角形時,請寫出點P的坐標(不要求過程,只需寫出結果).

查看答案和解析>>

同步練習冊答案