【題目】如圖,正方形紙片ABCD中,對角線AC、BD交于點O,折疊正方形紙片ABCD,使AD落在BD上,點A恰好與BD上的點F重合,展開后折痕DE分別交AB、AC于點E、G,連結(jié)GF,給出下列結(jié)論:①∠ADG=22.5°;②tan∠AED=2;③S△AGD=S△OGD;④四邊形AEFG是菱形;⑤BE=2OG;⑥若S△OGF=1,則正方形ABCD的面積是,其中正確的結(jié)論個數(shù)為( )
A.2 B.3 C.4 D.5
【答案】B.
【解析】
試題分析:∵四邊形ABCD是正方形,∴∠GAD=∠ADO=45°,由折疊的性質(zhì)可得:∠ADG=∠ADO=22.5°,故①正確.
∵由折疊的性質(zhì)可得:AE=EF,∠EFD=∠EAD=90°,∴AE=EF<BE,∴AE<AB,∴>2,故②錯誤.
∵∠AOB=90°,∴AG=FG>OG,△AGD與△OGD同高,∴S△AGD>S△OGD,故③錯誤.
∵∠EFD=∠AOF=90°,∴EF∥AC,∴∠FEG=∠AGE,∵∠AGE=∠FGE,∴∠FEG=∠FGE,∴EF=GF,∵AE=EF,∴AE=GF,故④正確.
∵AE=EF=GF,AG=GF,∴AE=EF=GF=AG,∴四邊形AEFG是菱形,∴∠OGF=∠OAB=45°,∴EF=GF=OG,∴BE=EF=×OG=2OG.
故⑤正確.
∵四邊形AEFG是菱形,∴AB∥GF,AB=GF.
∵∠BAO=45°,∠GOF=90°,∴△OGF時等腰直角三角形.
∵S△OGF=1,∴=1,解得OG=,∴BE=2OG=,GF===2,∴AE=GF=2,∴AB=BE+AE=,∴S正方形ABCD===,故⑥錯誤,∴其中正確結(jié)論的序號是:①④⑤.
故選B.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=BC,∠ABC=90°,F為AB延長線上一點,點E在BC上,且AE=CF.
(1)求證:△ABE≌△CBF;
(2)若,AE=2,求△ACF的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】A、B兩點的坐標分別為(1,0)、(0,2),若將線段AB平移至A1B1 , 點A1、B1的坐標分別為(2,a),(b,3),則a+b=
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知點A(2,﹣2),在坐標軸上確定點P,使△AOP為等腰三角形,則符合條件的有( )個.
A. 5 B. 6 C. 7 D. 8
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】初三年級參加體育運動會時組成隊形為10排,第一排20人,而后面每排比前排多1 人,寫出每排人數(shù)m與這排數(shù)n之間的函數(shù)關(guān)系式__________,自變量的取值范圍是_________;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某反比例函數(shù)象經(jīng)過點(﹣1,6),則下列各點中此函數(shù)圖象也經(jīng)過的是( )
A.(﹣3,2)
B.(3,2)
C.(2,3)
D.(6,1)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com