【題目】四邊形ABCD的對(duì)角線交于點(diǎn)E,有AE=EC,BE=ED,以AB為直徑的半圓過點(diǎn)E,圓心為O.
(1)利用圖1,求證:四邊形ABCD是菱形.
(2)如圖2,若CD的延長線與半圓相切于點(diǎn)F,已知直徑AB=8.
①連結(jié)OE,求△OBE的面積.
②求弧AE的長.
【答案】
(1)
證明:∵AE=EC,BE=ED,
∴四邊形ABCD是平行四邊形.
∵AB為直徑,且過點(diǎn)E,
∴∠AEB=90°,即AC⊥BD.
∵四邊形ABCD是平行四邊形,
∴四邊形ABCD是菱形.
(2)
證明:①連結(jié)OF.
∵CD的延長線與半圓相切于點(diǎn)F,
∴OF⊥CF.
∵FC∥AB,
∴OF即為△ABD中AB邊上的高.
∴S△ABD= AB×OF= ×8×4=16,
∵點(diǎn)O是AB中點(diǎn),點(diǎn)E是BD的中點(diǎn),
∴S△OBE= S△ABD=4.
②過點(diǎn)D作DH⊥AB于點(diǎn)H.
∵AB∥CD,OF⊥CF,
∴FO⊥AB,
∴∠F=∠FOB=∠DHO=90°.
∴四邊形OHDF為矩形,即DH=OF=4.
∵在Rt△DAH中,sin∠DAB= = ,
∴∠DAH=30°.
∵點(diǎn)O,E分別為AB,BD中點(diǎn),
∴OE∥AD,
∴∠EOB=∠DAH=30°.
∴∠AOE=180°﹣∠EOB=150°.
∴弧AE的長= = .
【解析】(1)先由AE=EC、BE=ED可判定四邊形為平行四邊形,再根據(jù)∠AEB=90°可判定該平行四邊形為菱形;(2)①連結(jié)OF,由切線可得OF為△ABD的高且OF=4,從而可得S△ABD , 由OE為△ABD的中位線可得S△OBE= S△ABD; ②作DH⊥AB于點(diǎn)H,結(jié)合①可知四邊形OHDF為矩形,即DH=OF=4,根據(jù)sin∠DAB= = 知∠EOB=∠DAH=30°,即∠AOE=150°,根據(jù)弧長公式可得答案本題主要考查菱形的判定即矩形的判定與性質(zhì)、切線的性質(zhì),熟練掌握其判定與性質(zhì)并結(jié)合題意加以靈活運(yùn)用是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正方形OABC的邊長為2,頂點(diǎn)A,C分別在x軸的負(fù)半軸和y軸的正半軸上,M是BC的中點(diǎn),P(0,m)是線段OC上一動(dòng)點(diǎn)(C點(diǎn)除外),直線PM交AB的延長線于點(diǎn)D.
(1)求點(diǎn)D的坐標(biāo)(用含m的代數(shù)式表示);
(2)當(dāng)△APD是以AP為腰的等腰三角形時(shí),求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,直線MN交⊙O于A,B兩點(diǎn),AC是直徑,AD平分∠CAM交⊙O于D,過D作DE⊥MN于E.
(1)求證:DE是⊙O的切線;
(2)若DE=6cm,AE=3cm,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A在數(shù)軸上,從點(diǎn)A出發(fā),沿?cái)?shù)軸向右移動(dòng)3個(gè)單位長度到達(dá)點(diǎn)C,點(diǎn)B所表示的有理數(shù)是5的相反數(shù),按要求完成下列各小題.
(1)請(qǐng)?jiān)跀?shù)軸上標(biāo)出點(diǎn)B和點(diǎn)C;
(2)求點(diǎn)B所表示的有理數(shù)與點(diǎn)C所表示的有理數(shù)的乘積;
(3)若將該數(shù)軸進(jìn)行折疊,使得點(diǎn)A和點(diǎn)B重合,則點(diǎn)C和數(shù) 所表示的點(diǎn)重合.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1表示同一時(shí)刻的韓國首爾時(shí)間和北京時(shí)間,兩地時(shí)差為整數(shù).
(1)設(shè)北京時(shí)間為x(時(shí)),首爾時(shí)間為y(時(shí)),就0≤x≤12,求y關(guān)于x的函數(shù)表達(dá)式,并填寫下表(同一時(shí)刻的兩地時(shí)間).
北京時(shí)間 | 7:30 | 11:15 | 2:50 |
首爾時(shí)間 | 8:30 | 12:15 | 3:50 |
(2)如圖2表示同一時(shí)刻的英國倫敦時(shí)間(夏時(shí)制)和北京時(shí)間,兩地時(shí)差為整數(shù).如果現(xiàn)在倫敦(夏時(shí)制)時(shí)間為7:30,那么此時(shí)韓國首爾時(shí)間是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為加強(qiáng)中小學(xué)生安全和禁毒教育,某校組織了“防溺水、交通安全、禁毒”知識(shí)競(jìng)賽,為獎(jiǎng)勵(lì)在競(jìng)賽中表現(xiàn)優(yōu)異的班級(jí),學(xué)校準(zhǔn)備從體育用品商場(chǎng)一次性購買若干個(gè)足球和籃球(每個(gè)足球的價(jià)格相同,每個(gè)籃球的價(jià)格相同),購買1個(gè)足球和1個(gè)籃球共需159元;足球單價(jià)是籃球單價(jià)的2倍少9元.
(1)求足球和籃球的單價(jià)各是多少元?
(2)根據(jù)學(xué)校實(shí)際情況,需一次性購買足球和籃球共20個(gè),但要求購買足球和籃球的總費(fèi)用不超過1550元,學(xué)校最多可以購買多少個(gè)足球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一個(gè)由5張紙片拼成的平行四邊形,相鄰紙片之間互不重疊也無縫隙,其中兩張等腰直角三角形紙片的面積都為S1 , 另兩張直角三角形紙片的面積都為S2 , 中間一張正方形紙片的面積為S3 , 則這個(gè)平行四邊形的面積一定可以表示為( )
A.4S1
B.4S2
C.4S2+S3
D.3S1+4S3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列3×3網(wǎng)格圖都是由9個(gè)相同的小正方形組成,每個(gè)網(wǎng)格圖中有3個(gè)小正方形已涂上陰影,請(qǐng)?jiān)谟嘞碌?個(gè)空白小正方形中,按下列要求涂上陰影:
(1)選取1個(gè)涂上陰影,使4個(gè)陰影小正方形組成一個(gè)軸對(duì)稱圖形,但不是中心對(duì)稱圖形.
(2)選取1個(gè)涂上陰影,使4個(gè)陰影小正方形組成一個(gè)中心對(duì)稱圖形,但不是軸對(duì)稱圖形.
(3)選取2個(gè)涂上陰影,使5個(gè)陰影小正方形組成一個(gè)軸對(duì)稱圖形.
(請(qǐng)將三個(gè)小題依次作答在圖1、圖2、圖3中,均只需畫出符合條件的一種情形)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是矩形,把矩形沿對(duì)角線AC折疊,點(diǎn)B落在點(diǎn)E處,CE與AD相交于點(diǎn)O.
(1)求證:△AOE≌△COD;
(2)若∠OCD=30°,AB=,求△AOC的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com