如圖:在四邊形ABCD中,點(diǎn)E在邊CD上,連接AE、BE并延長(zhǎng)AE交BC的延長(zhǎng)線于點(diǎn)F,給出下列5個(gè)關(guān)系式::①AD∥BC,②,DE=EC③∠1=∠2,④∠3=∠4,⑤AD+BC=AB。將其中三個(gè)關(guān)系式作為已知,另外兩個(gè)作為結(jié)論,構(gòu)成正確的命題。請(qǐng)用序號(hào)寫(xiě)出兩個(gè)正確的命題:(1) ;(2) ;
(1)如果①②③,那么④⑤;(2)如果①③④,那么②⑤.
【解析】
試題分析:如果①②③,那么④⑤:先證得△AED≌△FEC,得到AD=CF,再利用∠1=∠2,而∠2=∠F,得到AB=BF,則有AD+BC=AB;
如果①③④,那么②⑤:先由AD∥BC,得到∠1=∠F,而∠1=∠2,得到∠2=∠F,于是BA=BF,而∠3=∠4,可得AE=EF,易證△AED≌△FEC,得到AD=CF,DE=EC,易得AD+BC=AB.
試題解析:如果①②③,那么④⑤.理由如下:
∵AD∥BC,
∴∠1=∠F,∠D=∠ECF,
而DE=EC,
∴△AED≌△FEC,
∴AD=CF,
∵∠1=∠2,
∴∠2=∠F,
∴AB=BF,
而B(niǎo)F=BC+CF,
∴AD+BC=AB;
如果①③④,那么②⑤.理由如下:
∵AD∥BC,
∴∠1=∠F,
而∠1=∠2,
∴∠2=∠F,
∴BA=BF,
∵∠3=∠4,
∴BE平分AF,
即AE=EF,
易證△AED≌△FEC,
∴AD=CF,DE=EC,
而B(niǎo)F=BC+CF,
∴AD+BC=AB.
故答案為如果①②③,那么④⑤;如果①③④,那么②⑤.
考點(diǎn): 命題與定理.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com