(2013•河池)華聯(lián)超市欲購進(jìn)A、B兩種品牌的書包共400個.已知兩種書包的進(jìn)價和售價如下表所示.設(shè)購進(jìn)A種書包x個,且所購進(jìn)的兩種書包能全部賣出,獲得的總利潤為w元.
品牌 進(jìn)價(元/個) 售元(元/個)
A 47 65
B 37 50
(1)求w關(guān)于x的函數(shù)關(guān)系式;
(2)如果購進(jìn)兩種書包的總費不超過18000元,那么該商場如何進(jìn)貨才能獲得最大?并求出最大利潤.(提示利潤率=售價-進(jìn)價)
分析:(1)根據(jù)總利潤=每個的利潤×數(shù)量就可以表示出w與x之間的關(guān)系式;
(2)分別表示出購買A、B兩種書包的費用,由其總費用不超過18000元建立不等式組求出取值范圍,再由一次函數(shù)的解析式據(jù)可以求出進(jìn)貨方案及最大利潤.
解答:解:由題意,得
w=(65-47)x+(50-37)(400-x),
=5x+5200.
∴w關(guān)于x的函數(shù)關(guān)系式:w=5x+5200;
(2)由題意,得
47x+37(400-x)≤18000,
解得:x≤320.
∵w=5x+5200,
∴k=5>0,
∴w隨x的增大而增大,
∴當(dāng)x=320時,w最大=6800.
∴進(jìn)貨方案是:A種書包購買320個,B種書包購買80個,才能獲得最大利潤,最大利潤為6800元.
點評:本題考查了由銷售問題的數(shù)量關(guān)系求函數(shù)的解析式的運用,列一元一次不等式解實際問題的運用,一次函數(shù)的性質(zhì)的運用,解答時求出函數(shù)的解析式是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

同步練習(xí)冊答案