如圖,在平面直角坐標(biāo)系中,直線分別交軸、軸于兩點.點、,以為一邊在軸上方作矩形,且.設(shè)矩形重疊部分的面積為

(1)求點的坐標(biāo);

(2)當(dāng)值由小到大變化時,求的函數(shù)關(guān)系式;

(3)若在直線上存在點,使等于,請直接寫出的取值范圍.  

 

 

 

 

 

 

 

 

【答案】

 

(1)∵,,∴

∵矩形中,,∴,

∵點在第一象限,∴,.………………………1分

(2)由題意,可知,,在Rt△ABO中,tan∠BAO,

①當(dāng)0<b≤2時,如圖1,.……………………………………………2分

②當(dāng)2<b≤4時,如圖2,設(shè),

在Rt△AGC中,∵tan∠BAO,∴

,即,……………………………4分

 

 

 

 

 

 

 

 

 

 

③當(dāng)4<b≤6時,如圖3,設(shè),交,

在Rt△ADH中,∵tan∠BAO,∴,

在矩形中,∵CDEF,∴∠EGH=∠BAO

在Rt△EGH中,∵tan∠EGH,∴,

,即,……………5分

④當(dāng)b>6時,如圖4,.………………………………………………6分

(3). ……………………………………………

 【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(橫、縱坐標(biāo)均為整數(shù))中任意選取一個點,其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點坐標(biāo)為(4,0),D點坐標(biāo)為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運動,路徑為O→A→B→C,到達點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時,請寫出點P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊答案