分析 連接OP,OQ,由PQ為圓O的切線,利用切線的性質(zhì)得到OQ與PQ垂直,利用勾股定理列出關(guān)系式,由OP最小時(shí),PQ最短,根據(jù)垂線段最短得到OP垂直于AB時(shí)最短,利用面積法求出此時(shí)OP的值,再利用勾股定理即可求出PQ的最短值.
解答 解:連接OP、OQ,如圖所示,
∵PQ是⊙O的切線,
∴OQ⊥PQ,
根據(jù)勾股定理知:PQ2=OP2-OQ2,
∴當(dāng)PO⊥AB時(shí),線段PQ最短,
∵在Rt△AOB中,OA=OB=4,
∴AB=$\sqrt{O{A}^{2}+O{B}^{2}}$=4$\sqrt{2}$,
∴S△AOB=$\frac{1}{2}$OA•OB=$\frac{1}{2}$AB•OP,即OP=$\frac{OA•OB}{AB}$=2$\sqrt{2}$,
∴PQ=$\sqrt{O{P}^{2}-O{Q}^{2}}$=$\sqrt{(2\sqrt{2})^{2}-{1}^{2}}$=$\sqrt{7}$,
故答案為$\sqrt{7}$.
點(diǎn)評(píng) 此題考查了切線的性質(zhì),勾股定理的應(yīng)用,熟練掌握切線的性質(zhì)是解本題的關(guān)鍵,注意:圓的切線垂直于過(guò)切點(diǎn)的半徑.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | -1 | C. | -2 | D. | -3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
A型收割機(jī) | B型收割機(jī) | |
進(jìn)價(jià)(萬(wàn)元/臺(tái)) | 4 | 3 |
售價(jià)(萬(wàn)元/臺(tái)) | 6 | 4 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com