【題目】如圖,在⊙O中,AB是⊙O的直徑,AC是⊙O的弦,過點C作⊙O的切線交BA的延長線于點P,連接BC.
(1)求證:∠PCA=∠B;
(2)填空:已知∠P=40°,AB=12cm,點Q在 上,從點A開始以πcm/s的速度逆時針運動到點C停止,設(shè)運動時間為ts. ①當(dāng)t=時,以點A、Q、B、C為頂點的四邊形面積最大;
②當(dāng)t=時,四邊形AQBC是矩形.
【答案】
(1)證明:如圖1中,連接OC.
∵PC是切線,OC是半徑,
∴OC⊥PC,
∴∠PCO=90°
∴∠PCA+∠ACO=90°,
∵AB是直徑,
∴∠ACB=90°,
∴∠B+∠CAB=90°,
∵OC=OA,
∴∠OAC=∠OCA,
∴∠B+∠OCA=90°,
∴∠PCA=∠B.
(2)3s;
【解析】解:(2)①如圖2中,當(dāng)點Q在AB下方, = 時,四邊形AQBC的面積最大,此時t= =3s.
所以答案是3s.
②如圖3中,當(dāng) = 時,四邊形AQBC是矩形,連接CQ與AB交于點O.
∵∠P=40°,∠PCO=90°,
∴∠POC=50°,
∴∠AOQ=130°,
∴弧AQ的長= = ,
∴t= = s.
所以答案是 s.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:A是以BC為直徑的圓上的一點,BE是⊙O的切線,CA的延長線與BE交于E點,F(xiàn)是BE的中點,延長AF,CB交于點P.
(1)求證:PA是⊙O的切線;
(2)若AF=3,BC=8,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象的對稱軸是直線x=1,其圖象的一部分如圖所示則①abc<0;②a﹣b+c<0;③3a+c<0;④當(dāng)﹣1<x<3時,y>0.其中判斷正確的有( )個.
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,點O為坐標原點,平移拋物線y=x2﹣2x+3,使平移后的拋物線經(jīng)過點A(﹣2,0),且與y軸交于點B,同時滿足以A,O,B為頂點的三角形是等腰直角三角形,求平移后的拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是二次函數(shù)y=ax2+bx+c圖象的一部分,其對稱軸為直線x=1,若其與x軸交于點為A(3,0),則由圖象可知,方程ax2+bx+c的另一個解是( )
A.﹣1
B.﹣2
C.﹣1.5
D.﹣2.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=15,AC=12,BC=9,經(jīng)過點C且與邊AB相切的動圓與CB、CA分別相交于點E、F,則線段EF長度的最小值是( )
A.
B.
C.
D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】九(1)班數(shù)學(xué)興趣小組經(jīng)過市場調(diào)查,整理出某種商品在第x(1≤x≤90)天的售價與銷量的相關(guān)信息如下表:
時間x(天) | 1≤x<50 | 50≤x≤90 |
售價(元/件) | x+40 | 90 |
每天銷量(件) | 200﹣2x |
已知該商品的進價為每件30元,設(shè)銷售該商品的每天利潤為y元.
(1)求出y與x的函數(shù)關(guān)系式;
(2)問銷售該商品第幾天時,當(dāng)天銷售利潤最大,最大利潤是多少?
(3)該商品在銷售過程中,共有多少天每天銷售利潤不低于4800元?請直接寫出結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c的圖象,下列結(jié)論: ①二次三項式ax2+bx+c的最大值為4;
②4a+2b+c<0;
③一元二次方程ax2+bx+c=1的兩根之和為﹣1;
④使y≤3成立的x的取值范圍是x≥0.
其中正確的個數(shù)有( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com