如圖,拋物線y=x2-2x-3與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C.

(1)點(diǎn)A的坐標(biāo)為          點(diǎn)B的坐標(biāo)為         ,點(diǎn)C的坐標(biāo)為        ;
(2)設(shè)拋物線y=x2-2x-3的頂點(diǎn)坐標(biāo)為M,求四邊形ABMC的面積.
(1)(-1,0),(3,0),(0,-3);(2)9.

試題分析:(1)分別令x=0、y=0即可求出A、B、C的坐標(biāo);
(2)運(yùn)用配方法求出頂點(diǎn)M的坐標(biāo),作出拋物線的對稱軸,交x軸于點(diǎn)D,則四邊形ABMC的面積=△AOC的面積+梯形OCMD的面積+△BDM的面積.
試題解析:(1)由y=0得x2-2x-3=0.
解得x1=-1,x2=3.
∴點(diǎn)A的坐標(biāo)(-1,0),點(diǎn)B的坐標(biāo)(3,0).
由x=0,得y=-3
∴點(diǎn)C的坐標(biāo)(0,-3)
(2)如圖:作出拋物線的對稱軸,交x軸于點(diǎn)D,

由y=x2-2x-3=(x-1)2-4得
點(diǎn)M的坐標(biāo)(1,-4)
四邊形ABMC的面積=△AOC的面積+梯形OCMD的面積+△BDM的面積.
=
=9.
考點(diǎn): 二次函數(shù)圖象與性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

矩形OABC在平面直角坐標(biāo)系中的位置如圖所示,OA=3,AB=2.拋物線y=ax2+bx+c(a≠0)經(jīng)過點(diǎn)A和點(diǎn)B,與x軸分別交于點(diǎn)D、E(點(diǎn)D在點(diǎn)E左側(cè)),且OE=1,則下列結(jié)論:①a>0;②c>3;③2a﹣b=0;④4a﹣2b+c=3;⑤連接AE、BD,則S梯形ABDE=9.
其中正確結(jié)論的個數(shù)為( 。

A. 1個         B.2個         C.3 個        D.4 個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

拋物線的部分圖象如圖所示,若,則的取值范圍是        

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

把拋物線向左平移一個單位,所得拋物線的表達(dá)式為:                

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

請寫出一個二次函數(shù),使它的圖象滿足下列兩個條件:(1)開口向下;(2)與y軸的交點(diǎn)是(0,2) .你寫出的函數(shù)表達(dá)式是                    

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

二次函數(shù)y=x2+4x+5(﹣3≤x≤0)的最大值和最小值分別是        

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

將拋物線向右平移個單位,所得新拋物線的函數(shù)解析式是(     )
A.B.;
C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某商店將進(jìn)價為每件80元的某種商品按每件100元出售,每天可售出100件.經(jīng)過市場調(diào)查,發(fā)現(xiàn)這種商品每件每降低1元,其銷售量就可增加10件.
(1)設(shè)每件商品降低售價元,則降價后每件利潤        元,每天可售出        件(用含的代數(shù)式表示);
(2)如果商店為了每天獲得利潤2160元,那么每件商品應(yīng)降價多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線y=﹣2x2經(jīng)過平移到y(tǒng)=﹣2x2﹣4x﹣5,平移方法是(  )
A.向左平移1個單位,再向上平移3各單位
B.向左平移1個單位,再向下平移3個單位
C.向右平移1個單位,再向上平移3個單位
D.向右平移1個單位,再向下平移3個單位

查看答案和解析>>

同步練習(xí)冊答案