(2013•陜西)如圖,四邊形ABCD的對角線AC,BD相交于點O,且BD平分AC.若BD=8,AC=6,∠BOC=120°,則四邊形ABCD的面積為
12
3
12
3
.(結果保留根號)
分析:如圖,過點A作AE⊥BD于點E,過點C作CF⊥BD于點F.則通過解直角△AEO和直角△CFO求得AE=CF=
3
3
2
,所以易求四邊形ABCD的面積.
解答:解:如圖,過點A作AE⊥BD于點E,過點C作CF⊥BD于點F.
∵BD平分AC,AC=6,
∴AO=CO=3.
∵∠BOC=120°,
∴∠AOE=60°,
∴AE=AO•sin60°=
3
3
2

同理求得CF=
3
3
2
,
∴S四邊形ABCD=S△ABD+S△CBD=
1
2
BD•AE+
1
2
BD•CF=2×
1
2
×
3
3
2
×8=12
3

故答案是:12
3
點評:本題考查了解直角三角形,三角形的面積的計算.求圖中相關線段的長度時,也可以根據(jù)勾股定理進行解答.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•陜西)如圖,下面的幾何體是由一個圓柱和一個長方體組成的,則它的俯視圖是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•陜西)如圖,AB∥CD,∠CED=90°,∠AEC=35°,則∠D的大小為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•陜西)如圖,在四邊形ABCD中,AB=AD,CB=CD,若連接AC、BD相交于點O,則圖中全等三角形共有( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•陜西)如圖,AB是⊙O的一條弦,點C是⊙O上一動點,且∠ACB=30°,點E、F分別是AC、BC的中點,直線EF與⊙O交于G、H兩點.若⊙O的半徑為7,則GE+FH的最大值為
10.5
10.5

查看答案和解析>>

同步練習冊答案