規(guī)律探究題)觀察下列等式:

    12+2×1=1×(1+2);

    22+2×2=2×(2+2);

    32+2×3=3×(3+2);

    …

    則第n個(gè)等式可以表示為_(kāi)______.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀題:先觀察下列等式,然后用你發(fā)現(xiàn)的規(guī)律解答下列問(wèn)題.
1
1×2
=1-
1
2
,
1
2×3
=
1
2
-
1
3
,
1
3×4
=
1
3
-
1
4
,
1
2×4
=
1
2
1
2
-
1
4
1
4×6
=
1
2
(
1
4
-
1
6
)
1
6×8
=
1
2
(
1
6
-
1
8
)

┅┅
(1)計(jì)算
1
1×2
+
1
2×3
+
1
3×4
+
1
5×6
=
 

(2)探究
1
1×2
+
1
2×3
+
1
3×4
+…+
1
n(n+1)
=
 
.(用含有n的式子表示)
(3)若
1
1×3
+
1
3×5
+
1
5×7
+…+
1
(2n-1)(2n+1)
的值為
49
99
,求n的平方根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

探究題:
(1)觀察下列各式:
1
1
3
=2
1
3
;
2
1
4
=3
1
4
;
3
1
5
=4
1
5

①猜想
4
1
6
的變形結(jié)果并驗(yàn)證;
②針對(duì)上述各式反映的規(guī)律,給出用n(n為任意自然數(shù),且n≥1)表示的等式,并進(jìn)行證明.
(2)把閱讀下面的解題過(guò)程:
已知實(shí)數(shù)a、b滿足a+b=8,ab=15,且a>b,試求a-b的值.
解:∵a+b=8,ab=15
∴(a+b)2=a2+2ab+b2=64
∴a2+b2=34
∴(a-b)2=a2-2ab+b2=34-30=4
∴a-b=
4
=2.
請(qǐng)你仿照上面的解題過(guò)程,解答下面的問(wèn)題:已知實(shí)數(shù)x滿足x+
1
x
=
8
,且x>
1
x
,試求x-
1
x
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

觀察下列各式:
1
1×2
=1-
1
2
,
1
2×3
=
1
2
-
1
3
,…,…
(1)請(qǐng)根據(jù)以上的各式的變形方式,對(duì)下列各題進(jìn)行探究變形:
1
2×4
=
1
2
×(
1
2
-
1
4
1
2
×(
1
2
-
1
4
;②
1
4×6
=
1
2
×(
1
4
-
1
6
1
2
×(
1
4
-
1
6
;③
1
98×100
=
1
2
×(
1
98
-
1
100
1
2
×(
1
98
-
1
100
;
(2)由你所找到的規(guī)律計(jì)算:
1
2×4
+
1
4×6
+
1
6×8
+…+
1
98×100

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江蘇省無(wú)錫市后宅中學(xué)九年級(jí)期末測(cè)試數(shù)學(xué)試卷 題型:解答題

探究題:先觀察下列等式,再回答問(wèn)題
;          ②
;       ④
【小題1】你判斷完以上各題之后,發(fā)現(xiàn)了什么規(guī)律?請(qǐng)用含有n的式子將規(guī)律表示出來(lái),并注明n的取值范圍
【小題2】請(qǐng)用數(shù)學(xué)知識(shí)說(shuō)明你所寫(xiě)式子的正確性.

查看答案和解析>>

同步練習(xí)冊(cè)答案