已知:如圖,直線y1=mx-3m與x軸交于點(diǎn)A,直線y2=kx+b與y軸交于點(diǎn)C,兩直線交于點(diǎn)B.
(1)點(diǎn)A的坐標(biāo)為
 
;
(2)若∠BCO與∠BAO互為補(bǔ)角,則兩直線的位置關(guān)系為
 

(3)在上述條件下,若AB=BC,△BCO的面積為7,求過(guò)點(diǎn)B的反比例函數(shù)的解析式.
(4)在上述條件下,若Q為x軸上的一點(diǎn),且以A、B、C、Q四點(diǎn)為頂點(diǎn)的四邊形為梯形,求點(diǎn)Q的坐標(biāo).
考點(diǎn):一次函數(shù)綜合題
專(zhuān)題:數(shù)形結(jié)合
分析:(1)令y1=0,易求x=3,從而可得點(diǎn)A的坐標(biāo);
(2)由于∠BCO與∠BAO互為補(bǔ)角,四邊形ABCO的內(nèi)角和等于360°,∠O=90°,易求∠ABC=90°,故位置關(guān)系為垂直;
(3)先設(shè)B點(diǎn)坐標(biāo)是(c,d),過(guò)B分別向x、y軸做垂線段,交點(diǎn)分別F、E,∠BCO與∠BAO互為補(bǔ)角,易得∠BCE=∠BAF,利用AAS可證△BCE≌△BAF,那么BF=BE,CE=AF,于是c=d,b-c=c-3①,再結(jié)合S△BCO=7=
1
2
bc②,①②可得關(guān)于b、c的方程組,解可求b、c的值,進(jìn)而可求B點(diǎn)坐標(biāo),易求過(guò)B點(diǎn)的反比例函數(shù)解析式;
(4)B點(diǎn)坐標(biāo)已求,進(jìn)而可求y1的函數(shù)解析式,由(3)也可知道C點(diǎn)的坐標(biāo),過(guò)點(diǎn)C作CQ∥AB,交x軸于點(diǎn)Q,過(guò)C、Q的直線平行于直線AB,且與y軸交于點(diǎn)C,從而易求過(guò)C、Q的直線的解析式,令y=0,可求x=-
4
7
,這就是Q點(diǎn)的坐標(biāo).
解答:解:(1)令y1=0,則x=3,
∴A點(diǎn)坐標(biāo)是(3,0);

(2)∵∠BCO與∠BAO互為補(bǔ),
∴∠BCO+∠BAO=180°,
∵四邊形ABCO的內(nèi)角和等于360°,∠O=90°,
∴∠ABC=90°,
∴AB⊥BC;

(3)設(shè)B點(diǎn)坐標(biāo)是(c,d),過(guò)B分別向x、y軸做垂線段,交點(diǎn)分別F、E,
∵∠BCO與∠BAO互為補(bǔ)角,
∴∠BCO+∠BAO=180°,
∵∠BAO+∠BAF=180°,
∴∠BCE=∠BAF,
在△BCE和△BAF中,
∠BCE=∠BAF
∠BEC=∠BFA=90°
AB=BC
,
∴△BCE≌△BAF,
∴BF=BE,CE=AF,
∴c=d,b-c=c-3,
∵S△BCO=7,
1
2
cb=7,b=2c-3,
解得
b=4
c=
7
2
b=-7
c=-2
(不合題意,舍去)
故B點(diǎn)坐標(biāo)是(
7
2
7
2
),
那么過(guò)B點(diǎn)的反比例函數(shù)的解析式是y=
49
4x
(x>0);

(4)如右圖,過(guò)點(diǎn)C作CQ∥AB,交x軸于點(diǎn)Q,
∵直線y1=mx-3m過(guò)B點(diǎn),
∴y1=7x-21,
∵CQ∥AB,
∴過(guò)C、Q的直線可設(shè)為y=7x+f,
∵C點(diǎn)坐標(biāo)是(0,4),
∴過(guò)C、Q的直線是y=7x+4,
令y=0,則x=-
4
7
,
∴Q點(diǎn)的坐標(biāo)是(-
4
7
,0).
過(guò)點(diǎn)B作BQ′∥AC,交x軸于Q′,
∵直線AC過(guò)A、C,
∴直線AC的解析式是y=-
4
3
x+4,
∵BQ′∥AC,
∴直線BQ′的解析式可設(shè)為y=-
4
3
x+b,
把(
7
2
,
7
2
)代入y=-
4
3
x+b中,得
b=
49
6
,
故直線BQ′的解析式是y=-
4
3
x+
49
6
,
令y=0,則x=
49
8
,
故Q′的坐標(biāo)是(
49
8
,0).
∴所求Q的坐標(biāo)是(-
4
7
,0)或(
49
8
,0).
點(diǎn)評(píng):本題是一次函數(shù)綜合題,解題的關(guān)鍵是利用AAS證明△BCE≌△BAF,求出點(diǎn)B的坐標(biāo).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

若x2+2(m-3)x+25是一個(gè)完全平方式,則m的值為( 。
A、6或-3B、8或-2
C、8D、-5或3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

一件衣服以220元出售,可獲利10%,則這件衣服的進(jìn)價(jià)是(  )
A、110元B、180元
C、198元D、200元

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系中,四邊形ABOD為直角梯形,AD∥OB,∠BOD=90°,OB=16,OD=12,AD=21,動(dòng)點(diǎn)P從點(diǎn)D出發(fā),在線段DA上以每秒2個(gè)單位的速度向點(diǎn)A運(yùn)動(dòng),到達(dá)A點(diǎn)后即停止,動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),沿折線B-O-D以每秒1個(gè)單位的速度向點(diǎn)D運(yùn)動(dòng),到達(dá)點(diǎn)D后停止,點(diǎn)P、Q同時(shí)出發(fā),BD與PQ相交于點(diǎn)M,設(shè)運(yùn)動(dòng)的時(shí)間為t秒.
(1)求過(guò)A、B、D三點(diǎn)的拋物線的解析式;
(2)設(shè)△BPQ的面積為S,求S與t之間的函數(shù)關(guān)系式,并寫(xiě)出自變量t的取值范圍;
(3)是否存在時(shí)間t,使△BMQ為直角三角形?若存在,請(qǐng)求出t的值;若不存在,請(qǐng)說(shuō)明理由.
(4)當(dāng)t為何值時(shí)?以B、P、Q三點(diǎn)為頂點(diǎn)的三角形的等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,正方形ABCD的邊長(zhǎng)為2
15
,E,F(xiàn)分別是AB,BC的中點(diǎn),AF與DE,DB分別交于點(diǎn)M,N,則△DMN的面積是( 。
A、8
B、12
C、
15
D、15

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在圖中,每個(gè)小正方形的網(wǎng)格邊長(zhǎng)都為1,請(qǐng)?jiān)谙旅鎯煞鶊D中分別畫(huà)兩個(gè)形狀不同,面積都為20的菱形,要求菱形的頂點(diǎn)均在格點(diǎn)上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知關(guān)于x的方程x2-4x+5+a•(
1
x
+2)=0
,若a為正實(shí)數(shù),則下列判斷正確的是(  )
A、有三個(gè)不等實(shí)數(shù)根
B、有兩個(gè)不等實(shí)數(shù)根
C、有一個(gè)實(shí)數(shù)根
D、無(wú)實(shí)數(shù)根

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,A、D是直線l上兩點(diǎn),B、C兩點(diǎn)位于直線l的兩側(cè),若∠1=∠2,則添加下列哪一個(gè)條件后,不能保證△ABD≌△ACD( 。
A、AB=AC
B、∠3=∠4
C、∠B=∠C
D、BD=CD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖弧AEB與弧AFB有公共弦AB=6,D是弦AB上的一點(diǎn),AD=x,點(diǎn)E、F分別是弧AEB與弧AFB的中點(diǎn),P是EF上的中點(diǎn),y=AP2-DP2,則y與x的函數(shù)關(guān)系式是( 。
A、
B、
C、
D、

查看答案和解析>>

同步練習(xí)冊(cè)答案