(2006•平?jīng)觯┤鐖D,△ABC的邊長都大于2,分別以它的頂點為圓心,1為半徑畫弧(弧的端點分別在三角形的相鄰兩邊上),則這三條弧的長的和是( )

A.4π
B.3π
C.6π
D.5π
【答案】分析:要求三段弧長,就要分別算出第段弧長,根據(jù)弧長公式即可計算.
解答:解:三個圓的圓弧缺少的部分之和是:2π•1=×2π×1=π,
三個圓的弧長為2π×1×3=6π.
這三條弧的長的和是6π-π=5π.
故選D.
點評:根據(jù)三角形的內(nèi)角和是180°和弧長公式,求出各弧的長度之和,再用總長度減去各弧的長度之和即可.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(09)(解析版) 題型:解答題

(2006•平?jīng)觯┤鐖D,在⊙M中,所對的圓心角為120°,已知圓的半徑為2cm,并建立如圖所示的直角坐標(biāo)系.
(1)求圓心M的坐標(biāo);
(2)求經(jīng)過A,B,C三點的拋物線的解析式;
(3)點D是弦AB所對的優(yōu)弧上一動點,求四邊形ACBD的最大面積;
(4)在(2)中的拋物線上是否存在一點P,使△PAB和△ABC相似?若存在,求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年甘肅省張掖市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2006•平?jīng)觯┤鐖D,在⊙M中,所對的圓心角為120°,已知圓的半徑為2cm,并建立如圖所示的直角坐標(biāo)系.
(1)求圓心M的坐標(biāo);
(2)求經(jīng)過A,B,C三點的拋物線的解析式;
(3)點D是弦AB所對的優(yōu)弧上一動點,求四邊形ACBD的最大面積;
(4)在(2)中的拋物線上是否存在一點P,使△PAB和△ABC相似?若存在,求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年甘肅省武威市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2006•平?jīng)觯┤鐖D,在⊙M中,所對的圓心角為120°,已知圓的半徑為2cm,并建立如圖所示的直角坐標(biāo)系.
(1)求圓心M的坐標(biāo);
(2)求經(jīng)過A,B,C三點的拋物線的解析式;
(3)點D是弦AB所對的優(yōu)弧上一動點,求四邊形ACBD的最大面積;
(4)在(2)中的拋物線上是否存在一點P,使△PAB和△ABC相似?若存在,求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年甘肅省酒泉市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2006•平?jīng)觯┤鐖D,在⊙M中,所對的圓心角為120°,已知圓的半徑為2cm,并建立如圖所示的直角坐標(biāo)系.
(1)求圓心M的坐標(biāo);
(2)求經(jīng)過A,B,C三點的拋物線的解析式;
(3)點D是弦AB所對的優(yōu)弧上一動點,求四邊形ACBD的最大面積;
(4)在(2)中的拋物線上是否存在一點P,使△PAB和△ABC相似?若存在,求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年甘肅省定西市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2006•平?jīng)觯┤鐖D,在⊙M中,所對的圓心角為120°,已知圓的半徑為2cm,并建立如圖所示的直角坐標(biāo)系.
(1)求圓心M的坐標(biāo);
(2)求經(jīng)過A,B,C三點的拋物線的解析式;
(3)點D是弦AB所對的優(yōu)弧上一動點,求四邊形ACBD的最大面積;
(4)在(2)中的拋物線上是否存在一點P,使△PAB和△ABC相似?若存在,求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案