已知矩形ABCD如圖1放置,將矩形折疊,使B落在邊AD(含端點(diǎn))上,落點(diǎn)記為B′,折痕與線段AB交于E,與邊BC或者邊CD(含端點(diǎn))交于F,則以E、B、B′為頂點(diǎn)的三角形△BB′E稱為矩形ABCD的“折疊三角形”.
(1)由折疊三角形定義可知,矩形ABCD的任意一個(gè)折疊△BEB′都是一個(gè)
 
三角形.
(2)在矩形ABCD中,AB=6,AD=10,當(dāng)F與點(diǎn)C重合時(shí),在圖2中畫出這個(gè)折疊△BEB′,試求點(diǎn)B′的坐標(biāo)并求這個(gè)折疊△BEB′的面積.
考點(diǎn):翻折變換(折疊問題),坐標(biāo)與圖形性質(zhì),勾股定理,矩形的性質(zhì)
專題:
分析:(1)由折疊的性質(zhì)即可得出B′E=BE,進(jìn)而得出答案;
(2)由折疊性質(zhì)可知,BC=B′C′=10,又DC=AB=6,即可求出DB′的長(zhǎng),以及AB′的長(zhǎng),再利用Rt△AB′E中,AE2+AB′2=BE′2,求出BE即可得出點(diǎn)B′的坐標(biāo)并求這個(gè)折疊△BEB′的面積.
解答:解:(1)如圖1,∵將矩形折疊,使B落在邊AD(含端點(diǎn))上,落點(diǎn)記為B′,
∴B′E=BE,
∴△BEB′是等腰三角形,
即由折疊三角形定義可知,矩形ABCD的任意一個(gè)折疊△BEB′都是一個(gè)等腰三角形;
故答案為:等腰;

(2)如圖2,由題意可知,當(dāng)點(diǎn)F與點(diǎn)C重合時(shí),
由折疊性質(zhì)可知,BC=B′C′=10,又DC=AB=6,
∴DB′=
102-62
=8,
∴AB′=2,
設(shè)BE=EB′=x,AE=6-x,
在Rt△AB′E中,
AE2+AB′2=BE′2,
∴(6-x)2+22=x2
解得:x=
10
3
,
∴S△BBE=
1
2
×BE×AB′=
1
2
×
10
3
×2=
10
3

故B′點(diǎn)坐標(biāo)為(2,6).
點(diǎn)評(píng):本題考查了圖形的翻折變換以及到矩形的性質(zhì)和三角形面積求法,利用數(shù)形結(jié)合的思想進(jìn)行分析得出是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知△ABC的三邊長(zhǎng)為5cm,12cm,13cm,D、E、F分別是三邊的中點(diǎn),則△DEF的面積為( 。
A、30cm2
B、15cm2
C、7.5cm2
D、3.75cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

下列說法正確的是( 。
A、矩形的對(duì)角線互相垂直
B、正方形的對(duì)角線相等且互相平分
C、菱形的對(duì)角線相等
D、等腰梯形的對(duì)角線互相平分

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,菱形ABCD的周長(zhǎng)為24,DE⊥AB,垂足為E,DE:AD=
3
:2
,有下列結(jié)論(  )
①E是AB的中點(diǎn);
②DE=3
3
(或
27

③菱形的面積為18
3
(或
972

④CE=3
7
(或
63
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,D、E分別為AB、AC上的中點(diǎn),F(xiàn),G分別為BD、CE上的中點(diǎn),已知BC=8cm,則FG=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)如圖(1),可以求出陰影部分的面積是
 
.(寫成兩數(shù)平方差的形式)
(2)如圖(2),若把陰影部分裁剪下來,重新拼成一個(gè)長(zhǎng)方形,則它的面積是
 
.(寫成多項(xiàng)式乘法的形式)
(3)比較圖(1)、(2)中陰影部分的面積,可以得到乘法公式
 

(4)運(yùn)用你所得到的公式,完成下列各題:
①分解因式:4x2-16          
②計(jì)算:(2m+n-p)(2m-n+p)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2009年,我國為應(yīng)對(duì)國際金融危機(jī),銀行全年放貸總量超過9萬億元,用于擴(kuò)大內(nèi)需,刺激經(jīng)濟(jì),其中9萬億用科學(xué)記數(shù)法表示為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

化簡(jiǎn):
(1)
54
×
1
2
+
12
;
(2)(
72
-
16
8
+(
3
+1)(
3
-1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,C是
AB
的中點(diǎn),D、E分別是半徑OA、OB上的點(diǎn),且AD=BE.
求證:∠CDO=∠CEO.

查看答案和解析>>

同步練習(xí)冊(cè)答案