【題目】如圖,矩形ABCD中,AB=6,AD=8,點(diǎn)E在邊AD上,且AE:ED=1:3.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿AB 運(yùn)動(dòng)到點(diǎn)B停止.過(guò)點(diǎn)E作EF⊥PE交射線(xiàn)BC于點(diǎn)F,設(shè)M是線(xiàn)段EF的中點(diǎn),則在點(diǎn)P運(yùn)動(dòng)的整個(gè)過(guò)程中,點(diǎn)M運(yùn)動(dòng)路線(xiàn)的長(zhǎng)為______.
【答案】4
【解析】過(guò)點(diǎn)M作GH⊥AD,證明△EGM≌△FHM,得到MG=MH,從而可知:點(diǎn)M的軌跡是一條平行于BC的線(xiàn)段,然后證明△EF1B∽△∠EF1F2,求得F1F2=8,最后根據(jù)三角形中位線(xiàn)定理可求得答案.
解:如圖所示:過(guò)點(diǎn)M作GH⊥AD.
∵AD∥CB,GH⊥AD,
∴GH⊥BC.
在△EGM和△FHM中,
∴△EGM≌△FHM.
∴MG=MH.
∴點(diǎn)M的軌跡是一條平行于BC的線(xiàn)段
當(dāng)點(diǎn)P與A重合時(shí),BF1=AE=2,
當(dāng)點(diǎn)P與點(diǎn)B重合時(shí),∠F2+∠EBF1=90,∠BEF1+∠EBF1=90,
∴∠F2=∠EBF1.
∵∠EF1B=∠EF1F2,
∴△EF1B∽△∠EF1F2.
∴,
即
∴F1F2=8,
∵M1M2是△EF1F2的中位線(xiàn),
∴M1M2= F1F2=4.
故答案為:4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種商品因換季準(zhǔn)備打折出售,如果按標(biāo)價(jià)的7.5折出售將賠25元,而按標(biāo)價(jià)的9折將賺20元,問(wèn)這種商品的標(biāo)價(jià)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一塊三角形玻璃損壞后,只剩下如圖所示的殘片,對(duì)圖中的哪些數(shù)據(jù)測(cè)量后就可到建材部門(mén)割取符合規(guī)格的三角形玻璃( )
A.∠A,∠B,∠C
B.∠A,線(xiàn)段AB,∠B
C.∠A,∠C,線(xiàn)段AB
D.∠B,∠C,線(xiàn)段AD
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象過(guò)(﹣2,0),則下列結(jié)論:①bc>0;②b+2a=0;③a+c>b;④16a+4b+c=0;⑤3a+c<0.其中正確結(jié)論的個(gè)數(shù)是( )
A. 5 B. 4 C. 3 D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】線(xiàn)段AB的長(zhǎng)為5,點(diǎn)A在平面直角坐標(biāo)系中的坐標(biāo)為(3,﹣2),點(diǎn)B的坐標(biāo)為(3,x),則點(diǎn)B的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在函數(shù)y=kx(k>0)的圖象上有三點(diǎn)A1(x1,y1),A2(x2,y2),A3(x3,y3),已知x1<x2<0<x3,則下列各式中正確的是( )
A. y1<y2<0<y3 B. y3<0<y1<y2
C. y2<y1<y3<0 D. y3<y1<0<y2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,在△ABC中,D、E分別是AB,AC上的點(diǎn),AB=AC,AD=AE,然后將△ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)一定角度,連接BD,CE,得到圖②,將BD,CE分別延長(zhǎng)至M,N,使DM= BD,EN= CE,連接AM,AN,MN得到圖③,請(qǐng)解答下列問(wèn)題:
(1)在圖②中,BD與CE的數(shù)量關(guān)系是;
(2)在圖③中,猜想AM與AN的數(shù)量關(guān)系,∠MAN與∠BAC的數(shù)量關(guān)系,并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)是(﹣4,0),點(diǎn)B的坐標(biāo)是(0,b)(b>0),點(diǎn)P是直線(xiàn)AB上的一個(gè)動(dòng)點(diǎn),記點(diǎn)P關(guān)于y軸對(duì)稱(chēng)的點(diǎn)為P′.
(1)當(dāng)b=3時(shí)(如圖1),
①求直線(xiàn)AB的函數(shù)表達(dá)式.
(2)②在x軸上找一點(diǎn)Q(點(diǎn)O除外),使△APQ與△AOB全等,直接寫(xiě)出點(diǎn)Q的所有坐標(biāo)
(3)若點(diǎn)P在第一象限(如圖2),設(shè)點(diǎn)P的橫坐標(biāo)為a,作PC⊥x軸于點(diǎn)C,連結(jié)AP′,CP′.當(dāng)△ACP′是以點(diǎn)P′為直角頂點(diǎn)的等腰直角三角形時(shí),求出a,b的值.
(4)當(dāng)線(xiàn)段OP′恰好被直線(xiàn)AB垂直平分時(shí)(如圖3),直接寫(xiě)出b= .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com