如圖,點A、B、C是⊙O上的三點,AB∥OC

(1)求證:AC平分∠OAB.
(2)過點O作OE⊥AB于點E,交AC于點P.若AB=2,∠AOE=30°,求PE的長.
(1)證明見解析;(2).

試題分析:(1)用平行線及角平分線的性質(zhì)證明AC平分∠OAB;(2)利用勾股定理解直角三角形即可.
試題解析:(1)∵AB∥OC,∴∠C=∠BAC.
∵OA=OC,∴∠C=∠OAC.∴∠BAC=∠OAC,即AC平分∠OAB.
(2)∵OE⊥AB,∴AE=BE=AB=1.
又∵∠AOE=30°,∠PEA=90°,∴∠OAE=60°.
∴∠EAP=∠OAE="30°." ∴PE=AE×tan30°=1×=.
∴PE的長是.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:AB交⊙O于C、D,且OA=OB.求證:AC=BD

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

直角三角形兩直角邊長分別為3和4,那么它的外接圓面積是     

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,AB是⊙O的直徑,BC是弦,∠B=30°,延長BA到D使∠BDC=30°.

(1)求證:DC是⊙O的切線.
(2)若AB=2,求DC的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,AB是半圓的直徑,點D是弧AC的中點,∠ABC=50°,則∠DAB等于(   )
A.55°B.60°C.65°D.70°

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,點A,B,C,D為⊙O上的四個點,AC平分∠BAD,AC交BD于點E,CE=2,CD=3,則AE的長為( 。
A.2B.2.5C.3D.3.5

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,⊙O的半徑OA,OB,且OA⊥OB,連結(jié)AB. 現(xiàn)在⊙O上找一點C,使OA2+AB2=BC2,則∠OAC的度數(shù)為( 。

A.15°或75°    B.20°或70°    C.20°    D.30°

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,DC是⊙O直徑,弦AB⊥CD于F,連接BC,DB,則下列結(jié)論錯誤的是(  )
A.B.AF=BFC.OF=CFD.∠DBC=90°

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,點A、B、C在⊙O上,AB∥CO,∠A=38º,則∠B=       º.

查看答案和解析>>

同步練習冊答案