8、在學(xué)習(xí)“四邊形”的知識(shí)時(shí),小明的書上有一個(gè)圖因不小心被滴上了墨水(如圖),請(qǐng)問被墨跡遮蓋了的文字是( 。
分析:根據(jù)特殊四邊形的關(guān)系,結(jié)合圖形進(jìn)行解答.
解答:解:根據(jù)特殊四邊形的關(guān)系,有一個(gè)角是直角的平行四邊形是矩形,
有一組鄰邊相等的平行四邊形是菱形,
有一組鄰邊相等且有一個(gè)角是直角的平行四邊形是正方形,
結(jié)合圖形可知,被墨跡遮蓋了的文字是:菱形.
故選D.
點(diǎn)評(píng):本題主要考查了特殊四邊形:平行四邊形,矩形,菱形,正方形之間的關(guān)系,需熟練掌握并靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

29、一般地,學(xué)習(xí)幾何要從作圖開始,再觀察圖形,根據(jù)圖形的某一類共同特征對(duì)圖形進(jìn)行分類(即給一類圖形下定義--定義概念便于歸類、交流與表達(dá)),然后繼續(xù)研究圖形的其它特征、判定方法以及圖形的組合、圖形之間的關(guān)系、圖形的計(jì)算等問題.課本里對(duì)四邊形的研究即遵循著上面的思路.當(dāng)然,在學(xué)習(xí)幾何的不同階段,可能研究的是幾何的部分問題.比如有下面的問題,請(qǐng)你研究.已知:四邊形ABCD中,AB=DC,且∠ACB=∠DBC.
(1)借助網(wǎng)格畫出四邊形ABCD所有可能的形狀;
(2)簡(jiǎn)要說明在什么情況下四邊形ABCD具有所畫的形狀.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(2012•西城區(qū)二模)閱讀下列材料
小華在學(xué)習(xí)中發(fā)現(xiàn)如下結(jié)論:
如圖1,點(diǎn)A,A1,A2在直線l上,當(dāng)直線l∥BC時(shí),S△ABC=SA1BC=SA2BC
請(qǐng)你參考小華的學(xué)習(xí)經(jīng)驗(yàn)畫圖(保留畫圖痕跡):
(1)如圖2,已知△ABC,畫出一個(gè)等腰△DBC,使其面積與△ABC面積相等;
(2)如圖3,已知△ABC,畫出兩個(gè)Rt△DBC,使其面積與△ABC面積相等(要求:所畫的兩個(gè)三角形不全等);
(3)如圖4,已知等腰△ABC中,AB=AC,畫出一個(gè)四邊形ABDE,使其面積與△ABC面積相等,且一組對(duì)邊DE=AB,另一組對(duì)邊BD≠AE,對(duì)角∠E=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•通州區(qū)一模)小明在學(xué)習(xí)軸對(duì)稱的時(shí)候,老師留了這樣一道思考題:如圖,已知在直線l的同側(cè)有A、B兩點(diǎn),請(qǐng)你在直線l上確定一點(diǎn)P,使得PA+PB的值最小.小明通過獨(dú)立思考,很快得出了解決這個(gè)問題的正確方法,他的作法是這樣的:
①作點(diǎn)A關(guān)于直線l的對(duì)稱點(diǎn)A′.
②連接A′B,交直線l于點(diǎn)P.則點(diǎn)P為所求.請(qǐng)你參考小明的作法解決下列問題:
(1)如圖1,在△ABC中,點(diǎn)D、E分別是AB、AC邊的中點(diǎn),BC=6,BC邊上的高為4,請(qǐng)你在BC邊上確定一點(diǎn)P,使得△PDE的周長最。
①在圖1中作出點(diǎn)P.(三角板、刻度尺作圖,保留作圖痕跡,不寫作法)
②請(qǐng)直接寫出△PDE周長的最小值
8
8

(2)如圖2在矩形ABCD中,AB=4,BC=6,G為邊AD的中點(diǎn),若E、F為邊AB上的兩個(gè)動(dòng)點(diǎn),點(diǎn)E在點(diǎn)F左側(cè),且EF=1,當(dāng)四邊形CGEF的周長最小時(shí),請(qǐng)你在圖2中確定點(diǎn)E、F的位置.(三角板、刻度尺作圖,保留作圖痕跡,不寫作法),并直接寫出四邊形CGEF周長的最小值
6+3
10
6+3
10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆北京市通州區(qū)九年級(jí)中考一模數(shù)學(xué)卷(帶解析) 題型:解答題

小明在學(xué)習(xí)軸對(duì)稱的時(shí)候,老師留了這樣一道思考題:如圖,已知在直線l的同側(cè)有A、B兩點(diǎn),請(qǐng)你在直線l上確定一點(diǎn)P,使得PA+PB的值最小.小明通過獨(dú)立思考,很快得出了解決這個(gè)問題的正確方法,他的作法是這樣的:

①作點(diǎn)A關(guān)于直線l的對(duì)稱點(diǎn)A′.
②連結(jié)A′B,交直線l于點(diǎn)P.
則點(diǎn)P為所求.

請(qǐng)你參考小明的作法解決下列問題:
(1)如圖,在△ABC中,點(diǎn)D、E分別是AB、AC邊的中點(diǎn),BC=6,BC邊上的高為4,請(qǐng)你在BC邊上確定一點(diǎn)P,使得△PDE的周長最小.

①在圖1中作出點(diǎn)P.(三角板、刻度尺作圖,保留作圖
痕跡,不寫作法)                  
②請(qǐng)直接寫出△PDE周長的最小值        .
(2)如圖在矩形ABCD中,AB=4,BC=6,G為邊AD的中點(diǎn),若E、F為邊AB上的兩個(gè)動(dòng)點(diǎn),點(diǎn)E在點(diǎn)F左側(cè),且EF=1,當(dāng)四邊形CGEF的周長最小時(shí),請(qǐng)你在圖2中確定點(diǎn)E、F的位置.(三角板、刻度尺作圖,保留作圖痕跡,不寫作法),并直接寫出四邊形CGEF周長的最小值     .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年北京市通州區(qū)九年級(jí)中考一模數(shù)學(xué)卷(解析版) 題型:解答題

小明在學(xué)習(xí)軸對(duì)稱的時(shí)候,老師留了這樣一道思考題:如圖,已知在直線l的同側(cè)有A、B兩點(diǎn),請(qǐng)你在直線l上確定一點(diǎn)P,使得PA+PB的值最小.小明通過獨(dú)立思考,很快得出了解決這個(gè)問題的正確方法,他的作法是這樣的:

①作點(diǎn)A關(guān)于直線l的對(duì)稱點(diǎn)A′.

②連結(jié)A′B,交直線l于點(diǎn)P.

則點(diǎn)P為所求.

請(qǐng)你參考小明的作法解決下列問題:

(1)如圖,在△ABC中,點(diǎn)D、E分別是AB、AC邊的中點(diǎn),BC=6,BC邊上的高為4,請(qǐng)你在BC邊上確定一點(diǎn)P,使得△PDE的周長最小.

 

①在圖1中作出點(diǎn)P.(三角板、刻度尺作圖,保留作圖

痕跡,不寫作法)                  

②請(qǐng)直接寫出△PDE周長的最小值         .

(2)如圖在矩形ABCD中,AB=4,BC=6,G為邊AD的中點(diǎn),若E、F為邊AB上的兩個(gè)動(dòng)點(diǎn),點(diǎn)E在點(diǎn)F左側(cè),且EF=1,當(dāng)四邊形CGEF的周長最小時(shí),請(qǐng)你在圖2中確定點(diǎn)E、F的位置.(三角板、刻度尺作圖,保留作圖痕跡,不寫作法),并直接寫出四邊形CGEF周長的最小值      .

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案