精英家教網 > 初中數學 > 題目詳情

如圖:拋物線y=x2-2x-3與x軸交A、B兩點(A點在B點左側),直線1與拋物線交于A、C兩點,其中C點的橫坐標為2。

    (1)求A、B兩點的坐標及直線AC的函數解析式;

    (2)P是線段AC上的一個動點,過P點作y軸的平行線交拋物線于E點,求線段PE長度的最大值;

    (3)點G是拋物線上的動點,在x軸上是否存在點F,使以A、C、F、G為頂點的四邊形是平行四邊形?如果存在,求出所有滿足條件的F點坐標(請直接寫出點的坐標,不要求寫過程);如果不存在,請說明理由。

 (1)A(-1,0)、B(3,0);直線AC:y=-x-1;

(2)   (3)(-3,0)或(1,0)或(4+,0)

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,拋物線y=x2+4x與x軸分別相交于點B、O,它的頂點為A,連接AB,AO.
(1)求點A的坐標;
(2)以點A、B、O、P為頂點構造直角梯形,請求一個滿足條件的頂點P的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

16、如圖,拋物線y=-x2+2x+m(m<0)與x軸相交于點A(x1,0)、B(x2,0),點A在點B的左側.當x=x2-2時,y
0(填“>”“=”或“<”號).

查看答案和解析>>

科目:初中數學 來源: 題型:

已知如圖,拋物線y=x2+(k2+1)x+k+1的對稱軸是直線x=-1,且頂點在x軸上方.設M是直線x=-1左側拋物線上的一動點,過點M作x軸的垂線MG,垂足為G,過點M作直線x=-1的垂線MN,垂足為N,直線x=-1與x軸的交于H點,若M點的橫坐標為x,矩形MNHG的周長為l.
(1)求出k的值;
(2)寫出l關于x的函數解析式;
(3)是否存在點M,使矩形MNHG的周長最。咳舸嬖,求出點M的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•揚州)如圖,拋物線y=x2-2x-8交y軸于點A,交x軸正半軸于點B.
(1)求直線AB對應的函數關系式;
(2)有一寬度為1的直尺平行于y軸,在點A、B之間平行移動,直尺兩長邊所在直線被直線AB和拋物線截得兩線段MN、PQ,設M點的橫坐標為m,且0<m<3.試比較線段MN與PQ的大小.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,拋物線y=x2-2x-3與x軸分別交于A,B兩點.
(1)求A,B兩點的坐標;
(2)求拋物線頂點M關于x軸對稱的點M′的坐標,并判斷四邊形AMBM′是何特殊平行四邊形.(不要求說明理由)

查看答案和解析>>

同步練習冊答案