精英家教網 > 初中數學 > 題目詳情
如圖,已知直線l1∥l2∥l3∥l4∥l5,相鄰兩條平行直線間的距離都相等,如果直角梯形ABCD的三個頂點在平行直線上,∠ABC=90°且AB=3AD,則tanα=   
【答案】分析:利用三角形相似的判定求出假設AE=4y,DF=y,AF=y,即可得出∠α的值.
解答:解:做AE⊥l5,垂足為E,
∵直線l1∥l2∥l3∥l4∥l5,相鄰兩條平行直線間的距離都相等,直角梯形ABCD的三個頂點在平行直線上,∠ABC=90°,
∴∠BAE+∠EAD=90°,∠α+∠DAF=90°,
∴∠α=∠BAE,∠AEB=∠AFD,
∴△ABE∽△DAF,
∵且AB=3AD,AB÷AD=3,
假設AE=4y,
∴DF=y,AF=y,
∴tanα==
故答案為:
點評:此題主要考查了銳角三角函數的定義以及直角梯形的性質以及平行線分線段成比例定理,作出垂足利用相似三角形性質求出AF與DF是解決問題的關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

6、如圖,已知直線l1,l2,l3相交于點O,∠1=35°,∠2=25°,則∠3等于(  )

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•郯城縣一模)如圖,已知直線l1∥l2∥l3∥l4,相鄰兩條平行直線間的距離都是1,如果正方形ABCD的四個頂點分別在四條直線上,則cosα=( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

(2007•黔南州)如圖,已知直線l1∥l2,∠1=50°,那么∠2=
50°
50°

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖:已知直線l1∥l2,且l3、l4和l1、l2分別交于點A、B和點C、D,點P在AB上,設∠ADP=∠1,∠DPC=∠2,∠BCP=∠3.
(1)探究∠1、∠2、∠3之間的關系,并說明你的結論的正確性.
(2)若點P在A、B兩點之間運動時(點P和A、B不重合),∠1、∠2、∠3 之間的關系
不會
不會
發(fā)生變化(填會或不會)
(3)如果點P在A、B兩點外側運動時,(點P和A、B不重合)
①當點P在射線AM上時,猜想∠1、∠2、∠3之間的關系為
∠2=∠3-∠1
∠2=∠3-∠1
;
②當點P在射線BN上時,猜想∠1、∠2、∠3之間的關系為
∠3=∠1-∠2
∠3=∠1-∠2
(不必證明).

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知直線l1∥l2,直線l3和直線l1、l2交于點C和D,在直線l3上有點P(點P與點C、D不重合),點A在直線l1上,點B在直線l2上.
(1)如果點P在C、D之間運動時,試說明∠PAC+∠PBD=∠APB;
(2)如果點P在直線l1的上方運動時,試探索∠PAC,∠APB,∠PBD之間的關系又是如何?
(3)如果點P在直線l2的下方運動時,∠PAC,∠APB,∠PBD之間的關系又是如何?
∠PAC=∠PBD+∠APB
∠PAC=∠PBD+∠APB
(直接寫出結論)

查看答案和解析>>

同步練習冊答案